首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 194 毫秒
1.
针对快速傅里叶变换(FFT)分析电力系统谐波及Hilbert变换测量无功功率时的采样非同步问题,推导出了基于两点Hermite插值的同步化公式.该方法对由固定采样频率采得的序列进行重新定位,利用Hermite同步化公式获得当前实际信号的同步采样序列,从算法上实现对信号的同步跟踪,然后用普通FFT变换分析各次谐波参数以及用Hilbert变换测量无功功率.仿真结果表明,用该方法进行电网谐波分析和无功测量,同步化公式简单,运算量小,测量精度高,对于工频波动较大的情况仍具有很好的分析测量结果.  相似文献   

2.
针对快速傅里叶变换(FFT)分析电力系统谐波及Hilbert变换测量无功功率时的采样非同步问题,推导出了基于两点Hermite插值的同步化公式。该方法对由固定采样频率采得的序列进行重新定位,利用Hermite同步化公式获得当前实际信号的同步采样序列,从算法上实现对信号的同步跟踪,然后用普通FFT变换分析各次谐波参数以及用Hilbert变换测量无功功率。仿真结果表明,用该方法进行电网谐波分析和无功测量,同步化公式简单,运算量小,测量精度高,对于工频波动较大的情况仍具有很好的分析测量结果。  相似文献   

3.
针对电力谐波的准同步加窗分析法存在所用信号周期多、计算复杂和谐波泄漏分布不均匀等问题,基于准均匀采样提出了一种仅需1个信号周期特别适于单片机快速、准确实现的电力谐波分析方法。准均匀采样的时间离散误差不随连续采样而积累,在1个信号周期内取2的整数次幂个同步采样点,直接采用FFT算法即可实现谐波分析。基于信号的基波近似,并假设信号采样时的时间离散误差和幅值量化误差均服从均匀分布,对采用准均匀采样的电力谐波估计误差进行了分析。给出了基于准均匀采样电力谐波分析的算法和具体实现流程,流程中通过长整型变量对采样时间进行精确控制,算法简单高效。最后对准均匀采样谐波分析算法进行了仿真,结果表明基于通用单片机即可实现电力谐波的快速、准确分析。  相似文献   

4.
新型全数字锁相环的逻辑电路设计   总被引:5,自引:0,他引:5  
设计出一种新型全数字锁相环(enhancedphase-lockloop,EPLL)的逻辑电路。该电路基于轨迹跟踪原理实现与交流基波成分的同步,其锁相速度快,精度高。同时,为兼顾锁相速度和稳定性的设计要求,提出调节EPLL动态参数的新方法,获得具有优化结构的全数字锁相逻辑电路。锁相跟踪实验验证了该锁相环技术的性能,证实了其在提取和分析谐波方面的有效性。  相似文献   

5.
在电力系统谐波分析的过程中,由于非同步采样使信号在进行FFT变换的过程中产生频谱泄露和频谱混叠,分析精度大大降低。现有的加窗FFT谐波分析方法虽然能在一定程度上抑制频谱泄露,但存在插值修正公式复杂、不同频率成分检测互相干扰的缺点。提出了一种基于双向牛顿插值同步化采样序列的电力系统谐波检测方法。在非同步采样情况下,利用正向牛顿插值计算得到信号基波的周期,然后根据计算所得周期设置新的插值点,再利用反向牛顿插值得到该处的信号幅值,使得调整后的采样序列近似于同步采样情况下获得的采样序列,从而减小傅里叶分析时的频谱泄漏。仿真结果表明,该方法能够很好的解决频谱泄露的问题,相较于经典窗函数插值谐波分析方法,具有较高的谐波检测精度。  相似文献   

6.
传统的电能质量监测设备一般使用锁相环来实现同步采样,但是在频率阶跃、频率斜升和噪声比较大的情况下,锁相环会发生失锁现象,而异步采样又难以获取谐波信号.为了解决这一难题,提出了一种准同步采样算法,并设计了基于异步采样的在线电能质量监测系统.实际运行表明该设备对非平稳随机电网信号参数的准确监测,能避免同步采样中由于锁相环失...  相似文献   

7.
针对非同步采样情况下快速傅立叶算法进行谐波分析时所出现的频谱泄漏问题,本文分析了产生频谱泄漏的原因,提出一种应用插值函数的同步化算法,其目的是修正初次采样序列得到近似理想的同步采样点,以减小DFT分析产生的频谱泄漏.仿真结果表明该算法使频谱泄漏大大小于未同步化方法,具有良好性能、计算量小、适合于实时测量应用的特点.  相似文献   

8.
根据ATT7022E计量芯片的特点,文章给出了基于ATT7022E电能质量监测的谐波分析方法,重点研究了FFT作为谐波分析算法在ATT7022E的实际应用,对采用同步采样数据和ADC采样数据的两种谐波分析方法进行了实验。实验表明在设定谐波信号的情况下仿真,该方法研究对谐波分析的工程实际应用具有一定的参考价值。  相似文献   

9.
基于DSP和FPGA的高速数据采集系统的设计及实现   总被引:4,自引:5,他引:4  
贾龙  林岩 《电子测量技术》2007,30(5):95-97,100
本文设计了一种基于DSP和FPGA的双通道通用数据采集系统,每个通道的采样率为10 MSps,采样精度为14 b.设计中采用了FPGA实现2个异步FIFD作为模数转换器AD9240和数字信号处理器TMS320C6416的缓存器,并且FPGA内部可方便地实现各种逻辑电路与外围进行通信.数据的传输采用EDMA,实现了大容量数据的传输.实验结果表明,该数据采集系统有较高的采样精度,具有接口电路简单、可靠性高、调试方便等特点,可广泛应用于通信和图形采集中.  相似文献   

10.
基于采样频率自适应的高精度谐波分析软件算法   总被引:3,自引:1,他引:3  
潘立冬  王飞 《电测与仪表》2006,43(5):9-12,21
采样不同步产生的同步误差是造成频谱泄漏和影响谐波分析准确性、检测精度的重要原因。本文提出一种基于采样频率自适应技术的软件算法,通过采样数据计算得到信号较为准确的实际频率,并根据实际频率动态调整采样的时间间隔,实现采样频率的自适应,从而减少同步误差,降低频谱泄漏的影响。该软件算法实现简单,精度较高,对于频率变化较缓慢的电力信号能够明显地提高测量精度。仿真结果验证了算法的特性,给电力系统高精度谐波分析提供了一种有效的方法。  相似文献   

11.
基于时间同步技术的新型远方终端单元设计   总被引:4,自引:3,他引:1  
传统远方终端单元(RTU)的非同步测量和数据传输延时是电力系统数据采集与监视控制(SCADA)系统数据误差的主要来源。提出了一种基于全球定位系统(GPS)和以太网时间同步技术的同步化RTU,以更低的成本实现类似于相量测量单元(PMU)的同步测量和数据快速回传。硬件主要由数据调理和采样电路、本地人机接口(MMI)、同步采样控制电路和以太网通信电路等部分构成。通过时钟同步、同步采样和同步时标处理等环节,同步测量单元(SMU)能够给上位机数据库提供高精度带时标的数据。设计兼顾了同步测量能力和成本,以便在系统中广泛配置。  相似文献   

12.
非稳态谐波和间谐波检测的新方法   总被引:3,自引:1,他引:2  
提出了一种非稳态谐波、间谐波检测的新方法。该方法基于零差算法与增强型锁相环(enhanced phase-locked loop,EPLL)算法。零差算法具有计算量少、性能稳定的特点,利用参考信号对输入信号进行调制,从而得到非稳态谐波分量。根据输入信号预处理得到的间谐波分量频率范围设置EPLL算法的角频率初始值,以提高对间谐波分量的检测效率。采用多单元并行结构实现了对非稳态谐波、间谐波分量的同时检测。仿真结果表明,该方法能扩大EPLL算法中信号参数调节因子的取值范围,快速、准确检测出非稳态谐波、间谐波分量,有效抑制噪声干扰以及各频率分量之间的相互干扰。  相似文献   

13.
改进的容性电流补偿法能减轻电网谐波给金属氧化物避雷器阻性电流测量造成的误差,有效地获得MOA的阻性电流。但DFT在非同步采样时存在频谱泄漏和栅栏效应,影响了计算所得阻性电流的准确性。为了解决这个问题,提出了基于加Hanning窗插值的改进容性电流补偿法,有效减轻了非同步采样给阻性电流测量带来的误差,提高了根据阻性电流基波和三次谐波判断MOA故障方法的有效性。仿真分析验证了提出算法的有效性。  相似文献   

14.
同步发电机失磁故障对电网稳定性和发电机安全运行会产生很大影响。在中国,超高压发电机(extra high voltagegenerator,EHVG)是新型的同步发电机,其失磁后对电网的影响还处于研究阶段。为准确模拟EHVG失磁故障发生后磁场分布情况,建立了EHVG场、路、运动直接耦合的时步有限元分析模型,以EHVG模拟样机为算例,通过试验证明该模型正确,方法可行。利用该模型对EHVG同步运行和失磁异步运行的瞬态磁场进行对比分析,得出了同步运行和稳态异步运行时气隙磁密基波幅值基本一致,而失磁异步运行时气隙磁密谐波幅值较大;且随着EHVG失磁,稳态异步运行前所带负荷的减少进入稳态异步运行时,气隙磁密谐波分量也逐渐减小,气隙合成磁密接近正弦波,为其运行提供基础数据。  相似文献   

15.
本文提出了旨在消除同步采样条件限制的交流信号有功功率测量的异步采样方法.该方法提出了新的有功功率定义式的数值计算形式,依据交流信号一个周波内的多点采样值直接算出有功功率.采样频率只须根据存在的谐波按Nyquist定理确定,而不必满足同步采样条件.分析表明无论有无谐波,测量误差在周波内测量点数为128时约为1×10-6,且随测量点数的增大而进一步减小.依据该方法提出的算法相当简单,普通微处理器都可应用该算法连续测量每个周波的有功功率.  相似文献   

16.
This paper presents real time performance evaluation of three phase extension of an amplitude adaptive notch filter (AANF) for online estimation of frequency, amplitude, and sequence components of the input grid voltage signal. The performance of an extended AANF is compared with conventional synchronous reference frame-phase lock loop (SRF-PLL), enhanced phase lock loop (EPLL), and existing adaptive notch filter (ANF). Comparative analysis has been carried out based on their ability in extracting frequency and amplitude of input grid voltage signal under balanced and unbalanced voltage sag/swell, frequency shift and distorted grid condition. Three phase AANF method provides high degree of accuracy than SRF-PLL, EPLL, and ANF in extracting appropriate signal information for unbalanced and harmonically distorted grid condition. The important feature of this method is its amplitude adaptability, which improves its speed of response and accuracy when grid signal is of variable amplitude. OPAL-RT’s (OP4500) real time controller with an in-built Xilinx Kintex-7 FPGA processor is used for real time implementation. Experimental results validate fast and accurate performance of an extended AANF in extracting frequency, amplitude, and sequence components of the utility grid voltage signal, which can be further used for performance improvement of grid connected renewable energy systems, custom power devices, and flexible ac transmission systems (FACTS) devices.  相似文献   

17.
针对一台无刷励磁同步电动机异步运行时正常,而牵入同步运行时产生振动的现象,进行了故障分析,并对旋转整流盘、励磁机的串入电路波形进行了检测分析并逐一排除,最后利用交流阻抗电压测试法查明了磁极绕组短接的故障点,实施绝缘处理后使电机异常振动问题得以解决。  相似文献   

18.
在初期匝间短路故障检测中,故障特征频率的幅值很小,且易受到噪声信号的干扰,导致无法检测出故障信号。针对以上问题,提出了一种基于变分模态分解(VMD)与双对数频谱分析的永磁同步电机(PMSM)初期匝间短路故障检测方法。该方法利用VMD去除零序电压分量(ZSVC)中的噪声和相关谐波分量以突出故障特征分量。然后利用双对数频谱分析法对得到的信号进行频谱分析,通过检测频谱图中是否含有故障特征频率来判断电机匝间短路故障。通过仿真和实物试验验证了该故障检测方法的有效性。  相似文献   

19.
单相永磁同步发电机在民用发电系统中有一定的应用,然而单相电机的理论和工程应用主要集中在单相异步电动机。本文设计了并网运行的10KW单相永磁同步发电机,首先根据电磁负荷确定基本尺寸,应用磁路法对转子永磁体进行了设计,根据电机的相量图分析了移相电容的选取,对电机的两相绕组和谐波抑制进行分析设计,分析了斜槽对减小电压波形畸变率和负载转矩脉动的作用,最后通过场路耦合有限元方法计算了样机的运行特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号