首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
石墨烯基电极材料由于其优越的电化学性能,在超级电容器电极材料具有广阔的应用前景。介绍了石墨烯作为超级电容器电极材料的优缺点,重点对近几年石墨烯、石墨烯/碳、石墨烯/金属氧化物、石墨烯/导电聚合物等几类石墨烯基超级电容器电极材料的研究进展进行了综述;最后,对超级电容器用石墨烯基电极材料的研究前景进行了展望。  相似文献   

2.
李仁坤  王习文 《电源技术》2021,45(6):773-777
柔性储能装置是柔性电子器件的必备材料之一,其具备高柔性、高强度以及优异的电化学性能.以纳米纤维素作为柔性基底,提供支撑增强的作用,探究了不同电化学扫描速率、不同电流密度以及循环充放电对柔性电极材料电化学性能的影响.结果表明,随着扫描速率和电流密度的增大,比电容逐渐下降,扫描速率为10 mV/s时,柔性电极材料的比电容为100.78 F/g,扫描速率为90 mV/s时,比电容降为10.73 F/g,电流密度为0.5 A/g时,柔性电极材料的比电容为70.50 F/g,电流密度为1 A/g时,比电容降为10.10 F/g;在0.5 A/g的电流密度下,充放电一次之后,柔性电极材料的比电容为70.50 F/g;随着石墨烯量的减少,柔性电极材料的面电阻逐渐增大.综合以上结果,由于石墨烯优异的电子传导速率和聚苯胺优异的法拉第电容性能,柔性电极材料具备良好的电化学性能和稳定性,该制备工艺对柔性电极材料研究发展具有一定意义.  相似文献   

3.
以KMnO4和MnCl2为原料并添加一定量的SnCl4,采用常压回流液相共沉淀法合成了Sn改性MnO2电极材料。利用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)和电化学方法对其进行物理表征和电化学性能研究。结果表明反应溶液pH值对MnO2的结构、形貌和电化学性能影响很大。反应溶液为酸性和碱性时分别得到γ-MnO2和δ-MnO2。在pH=9时制备的Sn改性MnO2具有良好的电容性能,在0.5 A/g下,比电容达到176 F/g,比未改性MnO2提高了66%,电流密度增大到2.0 A/g时,比电容依然保持在166 F/g。在1.0 A/g下进行连续充放电测试,1 000次充放电循环后,比电容仍保持在165 F/g,容量衰减小于6%。Sn改性MnO2是一种理想的超级电容器电极材料,具有良好的高倍率充放电性能和容量保持能力。  相似文献   

4.
不同氧化剂制备的聚苯胺电化学性能研究   总被引:1,自引:0,他引:1  
以二氧化锰、过硫酸铵作为氧化剂,采用化学原位聚合法在室温下制备得到聚苯胺,并采用扫描电子显微镜(SEM),傅里叶变换红外光谱(FTIR)以及X-射线衍射(XRD)对其结构和形貌进行了表征.用循环伏安法、电化学阻抗和恒电流充放电技术测试了以其作为电极的超级电容器的电化学性能.结果表明,以二氧化锰为氧化剂制备的聚苯胺(简称为M-PANI)在电流密度为5 mA/cm2下的单电极比电容达260 F/g,300次循环后比电容仍有204 F/g,比以过硫酸铵作为氧化剂制备的聚苯胺(简称为N-PANI)具有更好的循环性能和更高的比容量.  相似文献   

5.
付岚 《电源技术》2023,(1):99-102
以炭气凝胶(CA)和氧化石墨烯(rGo)为原料,制备得到炭气凝胶/石墨烯薄膜。炭气凝胶的引入,避免了石墨烯片层紧密堆积或团聚,使得材料呈现松散堆叠。将CA/GO-4炭气凝胶/石墨烯薄膜用作柔性超级电容器电极,获得了高循环寿命的柔性超级电容器,在充放电循环10 000次后容量保持率高达90.21%,呈现出了较高的比电容。制备得到的薄膜不仅可满足柔性超级电容器电极材料的要求,石墨烯还兼具集流体的作用,大幅降低了超级电容器的内阻,极大提升了其电化学性能。  相似文献   

6.
利用碳材料廉价、高比电容、易制取等独特优点,通过优化组合活性炭、碳纳米管和二氧化锰材料的配比,制备碳基复合电极材料。根据循环伏安、交流阻抗和恒流充放电等实验测试,结果显示由上述复合电极组装的电化学超级电容器具有较高的功率密度和能量密度,并具有适用于大电流放电的频率特性和阻抗特性。经过若干次的充放电后,电容仍呈现出良好的循环特性。因此得出,由该炭基复合电极材料组成的超级电容器是一种理想的储能器件。  相似文献   

7.
在1 T磁场条件下合成了石墨烯基电容器电极,研究了磁场处理对电极结构和性能的影响。结果表明:磁场处理使石墨烯片层沿垂直于基底方向取向排列,电极材料的比表面积增大至154 m2/g,介孔平均尺寸为3.1 nm,比电容提高了约17%,电极的充放电效率得到有效提高,电化学阻抗出现明显下降。  相似文献   

8.
石墨烯具有独特的二维层状结构以及高电子导电,大比表面积等优异的物理特性,在超级电容器领域具有广阔的应用前景。详细介绍了石墨烯基材料用于超级电容器电极的研究进展,并重点讨论了对石墨烯进行结构和组分改性以提高其电容特性的各种方法。同时对超级电容器用石墨烯基材料在未来的研究方向进行了展望。  相似文献   

9.
由MOF-5制备的活性多孔碳及其超级电容特性   总被引:1,自引:0,他引:1  
以金属-有机骨架化合物MOF-5为原料,900℃直接炭化制备多孔碳电极材料,并进一步在浓HNO3中活化得到活性多孔碳(APC)。用X-射线衍射(XRD)、扫描电镜(SEM)和氮气吸附等温线等对样品的结构与形貌进行表征。并且以APC材料为超级电容器的电极材料组装成扣式电容器进行循环伏安、恒流充放电、漏电流、自放电、循环寿命等电化学测试。结果表明:样品的比表面积为654 m2/g,并且其孔结构是由微孔、介孔和大孔组成,其最可几孔径为1.93 nm;用APC材料作电极材料组装的超级电容器有良好的电化学性能,在1 A/g充放电电流密度下,APC电容器的比电容可达72 F/g,循环5 000次后,比电容几乎没有减少。  相似文献   

10.
简单概述了石墨烯及其制备方法:微机械剥离、石墨插层法、氧化石墨还原和化学气相沉积.综述了石墨烯作为电极材料对电化学电容器性能,特别是比电容的影响.  相似文献   

11.
采用电化学还原法成功将氧化石墨烯还原,得到具有一定柔性的石墨烯膜。利用扫描电子显微镜法(SEM)、透射电子显微镜法(TEM)、拉曼光谱、X射线光电子光谱法(XPS)等测试手段对石墨烯材料的结构和形貌进行了表征;结果表明,所制备的石墨烯形貌较好、表面平整、无褶皱;通过测试其电化学性能对其还原电位、膜层厚度等制备条件进行了优化;当伏安循环电压范围为-2.0~2.0 V、膜厚度为1μm时,得到的石墨烯膜电化学性能优异,电流密度为0.1 A/g时,比电容可以达到123.8 F/g。  相似文献   

12.
采用一步水热法制备出Co8FeS8/氮掺杂石墨烯复合材料。用X射线衍射(XRD)、扫描电镜(SEM)和显微共焦拉曼对材料结构、形貌进行表征;通过循环伏安、恒电流充放电以及交流阻抗对材料的电化学性能进行测试。结果表明:在1 A/g的电流密度下比电容为691.2 F/g;在电流密度为5 A/g下,经5000次循环后,电容保持率为85.23%。  相似文献   

13.
赵家昌  陈思浩  解晶莹 《电源技术》2007,31(12):1000-1003
研究了硅溶胶模板法制备的作为超级电容器电极材料中孔炭的孔结构和电化学性能.中孔炭的平均孔径和比电容随硅溶胶/炭源(葡萄糖)比的增加而增大.提出了一种硅溶胶模板法与CO2物理活化法相结合的模板-物理活化法以提高中孔炭的BET表面积来提高中孔炭的比电容.采用恒流充放电和电化学阻抗谱研究了中孔炭的孔结构与倍率性能的关系,并与商品化微孔活性炭作了比较.结果表明平均孔径较大的中孔炭具有较好的倍率特性.模板-物理活化法制备的中孔炭具有高比电容和良好的倍率特性.  相似文献   

14.
刘斌  朱令之  韩恩山  许寒 《电池》2017,(6):332-335
用硝酸对石墨烯进行表面活化处理。通过XRD、SEM、BET比表面积分析、红外光谱(FTIR)、X射线光电子能谱(XPS)和电化学阻抗谱(EIS)等测试,分析硝酸处理对材料表面及电化学性能的影响。硝酸处理后,样品表面的羟基和羰基含量增加。改性石墨烯以0.1 A/g在1.5~4.2 V循环,首次放电比容量为110.9 m Ah/g,循环500次的容量保持率为95.22%。  相似文献   

15.
化学改性MnO2电化学性能的研究   总被引:1,自引:0,他引:1  
通过加入Bi^3+、Co^2+、Pb^2+,分别制备了单掺杂改性的MnO2和二组分掺杂、三组分掺杂改性MnO2。并对样品极化曲线、放电性能及循环寿命进行了分析。分析结果表明,化学改性有利于改善MnO2的电化学性能,其中二组分和三组分掺杂改性的效果更加明显。  相似文献   

16.
石墨烯的制备及其电化学性能   总被引:5,自引:0,他引:5  
以石墨为原料,采用改进的Hummers方法制备氧化石墨,在水中经超声分散得到氧化石墨烯水溶胶,经硼氢化钠还原得到石墨烯聚集物。采用扫描电镜、原子力显微镜、激光粒度分析仪、BET氮气吸附仪对样品的形态、粒度分布和比表面积进行了表征。采用恒流充放电和循环伏安法研究了样品的充放电性能。结果表明,氧化石墨在水溶液中可以剥离成单片层结构,石墨烯聚集物比表面积为358m2/g,在10mA恒流下充放电,比电容为138.6F/g,充放电容量效率为98%。以5~50mV/s扫描速率进行循环伏安测试,石墨烯电极表现出良好的双电层电容器性能。  相似文献   

17.
通过两步法,以氧化石墨烯(GO)为前驱体,先采用抗坏血酸(VC)、KMn O4和Na2CO3为还原剂,水热反应还原氧化石墨烯,再分别利用化学刻蚀法和硝酸超声波法,制备多孔石墨烯。通过XRD、SEM、傅里叶转换红外光谱(FT-IR)、拉曼光谱(Raman)和热重(TG)等测试分析材料的表面微观结构和还原程度;采用循环伏安(CV)、恒流充放电及电化学阻抗谱(EIS)测试材料的电化学性能。以VC为还原剂,制得还原程度较好且孔结构明显的石墨烯,用硝酸超声波处理后的石墨烯孔径小而且均匀,以1 A/g的电流在0~0.56 V循环,电极材料的比电容为87.50 F/g。  相似文献   

18.
研究了纳米颗粒状的Super P、气相生长的碳纤维(VGCF)、片状的KS6和石墨烯四种不同的导电剂对富锂正极材料Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2(LR-MNC)的电化学性能发挥的影响。研究结果表明,当导电剂的添加量为10%(质量分数),以Super或VGCF的导电剂在活性材料的表面形成了完整的导电通路,电极的表面电阻最小,从而有利于电子的传输,因此,正极活性物质表现出优异的倍率放电性能和循环性能。其中,以Super P为导电剂的电极性能最优,3 C放电比容量为164.4 mAh/g,1 C循环100周,容量保持率为82.3%。而以片状的KS6或石墨烯单独作为导电剂,在电极中没有形成完整的导电通路,不利于正极活性物质的大倍率放电性能的发挥。  相似文献   

19.
以间苯二酚、甲醛、无水碳酸钠与氧化石墨烯为原料,通过溶胶-凝胶法制备得到了石墨烯基炭气凝胶。研究了石墨烯含量对材料微观结构与性能的影响。通过SEM对其表面形貌进行观察、XRD分析其结构和BET确定比表面积与孔径分布,再对所制备的材料进行电化学性能分析。结果表明:在进行一定量的氧化石墨烯掺杂后,炭气凝胶(CAG)表面孔隙结构坍塌破损程度明显降低,材料表面的孔洞结构比较完整。掺杂氧化石墨烯能够显著降低放电初始阶段的电压降,并且可以提升材料的电容性能。将CAG-0.25组装成超级电容器,比能量达到29.69 Wh/kg,充放电循环2000次后容量保持率为89.01%。  相似文献   

20.
Li4Ti5O12的合成及性能研究   总被引:2,自引:1,他引:2  
采用固相反应合成出锂离子电池负极材料Li_4Ti_5O_(12)。考察了两种原料混合方法以及掺杂石墨对产品性能的影响。对产品进行了XRD(X射线衍射)、SEM(扫描电子显微镜)及电化学性能测试研究。结果表明,球磨混合原料的方法制备出的Li4Ti5O12颗粒更均匀,具有更好的电化学性能;掺杂石墨后,产品的大电流充放电性能得到改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号