首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
通过形貌观察及电化学性能测试,研究了化学镀铜(Cu)和热处理对储氢合金La0.6Nd0.2 Mg0.2 Ni3.3 Co0.3 Al0.25电化学性能的影响.化学镀Cu后,储氢合金的活化性能较好,第2次循环时,电极的放电比容量即达到最大值335.4 mAh/g,第50次循环的容量保持率由未处理的80.43%增加到89.3%,极化电流从77.07 mA/g增加到102.79 mA/g;在473 K热处理后,阻抗由0.333Ω降低到0.227Ω.处理后,合金电极的电化学反应能力得到改善,合金表面电子转移能力增强.  相似文献   

2.
将La0.6 Nd0.2 Mg0.2Ni3.3 Co0.3 Al0.2储氢合金粉在6 mol/L KOH溶液中进行热碱处理,分析了合金颗粒的相结构、合金电极的电化学性能.在80℃下处理lh的合金,虽然容量有所降低,但第50次循环的容量保持率由热碱处理前的80.43%增加到处理后的89.78%;以900 mA/g的电流在0.6~1.2V放电,高倍率放电(HRD)性能由35.7%增加到了62.4%.合金的极化电流(I0)随着循环次数的增加而下降,说明合金的动力学性能在循环过程中不断劣化,导致合金在放电过程中极化现象加剧,主要是因为合金表面被腐蚀.  相似文献   

3.
加镍球磨对氢化燃烧合成Mg_2NiH_4的影响   总被引:4,自引:3,他引:1  
利用氢化燃烧合成法与机械球磨法复合制备镁基储氢电极合金,研究了加镍球磨对合金的影响.XRD结果表明:加镍球磨后,合金结构由晶态转变为非晶态.电化学测试结果表明:氢化燃烧合成产物加镍球磨后,电化学性能有所改善,如添加镍粉球磨后,合金电极的放电比容量为580.06 mAh/g,循环20次后为346.24 mAh/g,容量保持率约为60%.  相似文献   

4.
为了改善氢镍电池用稀土储氢合金的电化学性能,研究了电解质改性对La_(0.7)Mg_(0.3)Ni_(3.5)合金电极电化学性能的影响。在6 mol/L的KOH原电解液中分别添加适量LiOH、NaOH、Cu(OH)_2后,电极的最大放电比容量和活化性能没有太大的变化,但电极的容量保持率和高倍率放电性能都有明显提高。  相似文献   

5.
张伟  刘开宇  张莹  苏耿 《电源技术》2007,31(6):488-490
采用机械球磨法制备出不同碳纳米管(CNTs)含量的LaNi5合金复合储氢材料.考察了不同CNTs含量下复合储氢材料的微观结构及电化学储氢性能的影响.结果发现CNTs的加入不同程度地改善了复合材料的性能.其中质量分数为15%CNTs含量的复合材料比容量达到了311 mAh/g,比LaNi5母合金比容量提高了21%,经过200次循环后放电比容量仍高达280 mAh/g,表现出良好的协同作用和循环性能.  相似文献   

6.
为改善无钴AB,储氢合金La1-xPrxNi4.2Mn0.3Al0.3Cu0.15Fe0.05的循环性能,采用XRD、SEM等分析方法以及恒电流充放电等电化学测试技术,研究了系列La1-xPrxNi4.2Mn0.3Al0.3Cu0.15Fe0.05(x=0-0.3)合金的结构和电化学储氢性能。结果表明:制备的合金为单一的CaCu,结构,随着Pr替代La含量的增加,晶胞的口轴、C轴和晶胞体积均逐渐减小,c/a值逐渐增大。相应合金的放电容量有所降低,但合金电极的循环稳定性和高倍率放电性能得到明显改善。100个循环后的容量保持率S100分别为47.28%(x=0)、48.22%(乒0.1)、50.79%(x=0.2)和54.47%(x=0.3)。在放电电流为1800mA/g的条件下,合金电极的高倍率性能45.13%(x=0)升高到56.19%(x=0.3)。合金电极的交换电流密度厶随Pr含量的增加而逐渐增大,而合金电极的氢扩散系数DH没有明显变化。  相似文献   

7.
张龙  赵熙然  傅宇晨 《电源技术》2021,45(8):1027-1030,1086
采用X射线衍射仪、扫描电镜和电化学工作站等手段,研究了高压处理对电池负极材料La0.68Mg0.32Ni3.2储氢合金物相组织、显微组织和电化学性能的影响.结果表明:铸态La0.68Mg0.32Ni3.2储氢合金主要由(La,Mg)Ni3和(La,Mg)2Ni7相组成,并含有少量(La,Mg)5Ni19、LaNi5和(La,Mg)Ni4相;高压处理后La0.68Mg0.32Ni3.2储氢合金中(La,Mg)Ni3相含量增加而(La,Mg)2Ni7相相含量减少,且压力越大则(La,Mg)Ni3相含量越高、(La,Mg)2Ni7相含量越少;1 GPa压力下La0.68Mg0.32Ni3.2储氢合金电极的最大放电容量要明显高于3和5 GPa压力处理后的合金电极;1 GPa压力下合金电极循环100周后的容量保持率(S100)最大,而3和5 GPa压力下合金电极的S100甚至低于铸态合金电极.高压处理后La0.68Mg0.32Ni3.2储氢合金电极的电催化活性明显提高,电极的动力学性能比铸态合金电极更好;高压处理态La0.68Mg0.32Ni3.2储氢合金电极的氢扩散速率相较于铸态储氢合金电极有所减小,La0.68Mg0.32Ni3.2储氢合金电极的高倍率放电性能与氢扩散系数有关.  相似文献   

8.
研究了纳米CuO球磨原位包覆对氢化燃烧合成(HCS)产物Mg2NiH4结构和电化学性能的影响.XRD分析表明:球磨过程中,纳米CuO被Mg2NiH4还原为Cu,包覆于合金表面,提出了球磨原位包覆机制.电化学测试表明:纳米CuO球磨原位包覆提高了镁基合金氢化物电极的抗腐蚀性能,随着CuO添加量的增加和球磨时间的延长,电极的循环稳定性提高,首次放电比容量降低.添加30% CuO球磨40 h的电极,以30 mA/g的电流放电至-0.6V,首次比容量为146 mAh/g,第10次循环(30 mA/g放电至-0.6V,300 mA/g充电2 h)的容量保持率为48.6%.  相似文献   

9.
以氧化锌(ZnO)为添加剂,制备了加锌MLNi_(3.9)Co_(0.6)Mn_(0.3)Al_(0.3)贮氢合金电极。添加0.5%的ZnO制作的电池,初始开路电压为1.20 V;在1.0~1.6 V循环,0.2 C首次放电比容量达到291.7 mAh/g,第100次循环的容量保持率为95.88%,相比于空白MLNi_(3.9)Co_(0.6)Mn_(0.3)Al_(0.3)电极,分别提高了0.39 V、31.6 mAh/g和5.70%。用该电极制作的200 Ah镍氢动力电池,搁置电压大于1.20 V,在0.8~1.6 V循环,0.2 C首次放电容量达到200 Ah,而未加锌的合金电极制作的电池,第3次循环才达到额定容量。ZnO的加入不影响电池标准循环寿命、荷电保持和容量恢复能力。  相似文献   

10.
为改善无钴AB5储氢合金LaNi4.2Mn0.3Al0.3Cu0.15Fe0.05的循环性能,采用XRD、SEM等分析方法以及恒电流充放电等电化学测试技术,研究了系列La1-xPrxNi4.2Mn0.3Al0.3Cu0.15Fe0.05(x=0~0.3)合金的结构和电化学储氢性能。结果表明:制备的合金为单一的CaCu5结构,随着Pr替代La含量的增加,晶胞的a轴、c轴和晶胞体积均逐渐减小,c/a值逐渐增大。相应合金的放电容量有所降低,但合金电极的循环稳定性和高倍率放电性能得到明显改善。100个循环后的容量保持率S100分别为47.28%(x=0)、48.22%(x=0.1)、50.79%(x=0.2)和54.47%(x=0.3)。在放电电流为1800 mA/g的条件下,合金电极的高倍率性能45.13%(x=0)升高到56.19%(x=0.3)。合金电极的交换电流密度I0随Pr含量的增加而逐渐增大,而合金电极的氢扩散系数DH没有明显变化。  相似文献   

11.
刘子利  闫新春  刘希琴 《电池》2011,41(2):94-96
采用机械合金化法制备LaMg11Zr+200%Ni+x%Mg(x=0、5和10)合金,研究了镁含量x对产物结构和电化学性能的影响。球磨20 h后,LaMg11Zr+200%Ni+x%Mg合金呈非晶态,颗粒随x的增加而细化。LaMg11Zr+200%Ni+x%Mg合金电极的活化性能较好,最大放电容量随着x的增加而增大,但循环稳定性降低。当x=10时,以50 mA/g的电流放电至截止电位-0.6 V,合金电极的最大放电比容量为994.8 mAh/g,第30次循环的容量保持率为26.0%。合金电极的高倍率放电性能随着放电电流的增大而减弱,随着x的增加而增强。  相似文献   

12.
LaMg_(11)Zr+200%Ni+x%Zr合金的电化学性能   总被引:2,自引:1,他引:1  
以La Mg11Zr为母体合金,采用机械合金化法制备了La Mg11Zr+200%Ni+x%Zr(x=0、5或10)系列合金。用XRD分析了Zr添加量(x)对非晶相形成的影响,并对电化学性能进行了测试。球磨20 h的合金都呈非晶态,Zr可促进非晶组织的形成。当x从0增加到10时,合金电极的最大放电比容量由576.2 mAh/g降低到399.7 mAh/g;但循环性能增强,第30次循环的容量保持率由53.02%增加88.92%;合金的动力学性能有所改善。  相似文献   

13.
镀钴对AB_3型储氢合金电化学性能的影响   总被引:1,自引:0,他引:1  
采用镀钴的方法对Mm0.78Mg0.22Ni2.48Mn0.09Al0.23Co0.47(Mm由82.3%La和17.7%Nd组成)储氢合金进行表面改性。X射线衍射(XRD)结果表明,经过镀钴处理后的合金的相结构并没有发生改变。对合金电极的电化学行为进行了研究,结果表明:镀钴处理后电极放电比容量显著增大,达到312.6 m Ah/g;循环稳定性也得到很大的提高,50个充放电循环后电极的容量保持率由原来的83.3%增加到97.2%;合金电极的交换电流密度I0、极限电流密度IL、腐蚀电位Ecorr、电化学反应活性均得到明显地提高。  相似文献   

14.
刘慧  岳鑫  刘景东 《电池》2012,(4):186-188
为了减少电解液中的活性多硫离子扩散,抑制“飞梭效应”,在介孔炭(MC)复合硫(MC/S)正极中添加蒙脱石,并进行充放电测试、循环伏安和交流阻抗谱分析.添加蒙脱石的电极第2次循环的放电容量保持率大于未添加蒙脱石的电极,加入蒙脱石有利于活性物质在介孔炭电极表面的均匀分布,但会增加电极阻抗.蒙脱石添加量为10%的电极性能较好...  相似文献   

15.
用恒流充放电、循环伏安、线性极化及交流阻抗等方法,研究了Co3O4对AB5型贮氢合金电极电化学性能的影响。掺杂电极更容易活化,在电压1.15 V处出现二次放电平台,与空白电极相比,添加5%与10%Co3O4电极的0.2C最大放电比容量分别提高21.2 mAh/g和36.0 mAh/g;掺杂电极的循环稳定性较好,添加5%与10%Co3O4电极第100次循环的容量保持率分别为95.73%和97.37%。电化学性能提高是因为部分Co3O4在碱性电解液中发生Co-Co(OH)2可逆氧化还原。Co3O4提高了电极表面的催化活性,降低了电荷转移电阻;适量添加Co3O4,有利于提高合金电极的大电流放电能力。  相似文献   

16.
尹立辉  高俊奎  杜萍 《电源技术》2006,30(3):187-188,223
采用复合电镀法在铜箔上首先沉积镍-二氧化硅镀层,然后再电镀锡制备镍-二氧化硅-锡复合电极,用作锂离子蓄电池阳极材料进行了电化学测试。首次充电(合金化)容量为801mAh·g-1,首次放电(去合金化)容量达到706mAh·g-1,初次充放电效率为88.1%,20次循环后可逆容量仍保持在465mAh·g-1。Ni-SiO2-Sn复合电极的循环性能明显好于Sn-Ni合金电极和电镀Sn电极。  相似文献   

17.
用溶胶一凝胶法合成了掺钴的尖晶石锰酸锂Li1.05Co0.05Mn1.95O4,由于Co3+的引入使得材料结构更加稳定,循环稳定性增强.材料在0.1 C下首次放电比容量为105.2 mAh/g,循环20次后为104.3mAh/g,容量保持率为99.1%;1 C下首次放电比容量为92.4 mAh/g,循环20次后放电比容量为91.1mAh/g,容量保持率为98.5%.电池在充电前电荷转移电阻Rct很大,锂离子扩散系数较小,1C循环结束后电极的电荷转移电阻Rct最大为225.2Ω,0.5 C循环结束后电极的锂离子扩散系数DLi+最大为6.16×10-5 m2/s.  相似文献   

18.
马建新  陈长聘  潘洪革 《电池》2002,32(Z1):98-100
对无钻AB5型MlNi4.45-xMn0.040Al0.15Snx电极合金相结构和电化学性能进行了研究.XRD分析结果表明:当Sn含量x≥0.3时,合金中除了LaNi5主相外,还存在LaNiSn等第二相,且第二相析出总量随着Sn含量的增大而增加;电化学性能测试结果表明:随着Sn含量的增加,合金的电化学充放电循环稳定性得到改善,但是对合金的放电容量和大电流放电性能有不利的影响;综合比较看,Sn含量x=0.3时合金的电化学性能最好,最大放电容量Cmax=295.0mAh/g,活化次数为2次充放电循环,300次循环后的容量保持率为70.45%,高倍率放电性能HRD900=55.18%.  相似文献   

19.
孙庆  史鹏飞  矫云超  程新群 《电池》2007,37(5):345-347
采用液相法制备锂离子电池SnCo合金极材料.XRD结果显示其具有一定的无定形态.电化学测试表明:SnCo合金电极的首次充电比容量为822 mAh/g,40次循环后的容量保持率为88%,80次循环后的容量保持率为80%.该材料中的金属Co含量为10.8%,使SnCo合金材料有望成为实用化高比容量锂离子电池负极材料.  相似文献   

20.
通过添加表面活性剂KD-1,制备了均匀分布有Super-P炭黑/气相生长碳纤维(VGCF-H)复合导电剂的电极。导电剂的均匀分布可提高锂离子电池的循环性能和倍率性能。正极活性物质为尖晶石LiMn2O4的电池,以1.0C在3.30~4.35 V循环100次的容量保持率为94.5%;以0.2C充电、不同电流放电循环,第4次循环的2.0C放电比容量为0.2C时的70.3%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号