首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
频率偏差以及间谐波等的存在制约了非稳态下电力谐波分析的准确度,而传统FFT算法容易受到频谱泄漏和栅栏效应的影响.分析了余弦函数窗频谱特性,并提出基于余弦偶次幂窗改进FFT的非稳态谐波分析方法.在改进的FFT方法中运用最小二乘拟合法推导信号基波与各次谐波的频率、幅值和相位计算修正公式.仿真结果表明:提出的方法能有效减小基波频率波动以及间谐波的影响、提高谐波参数的计算准确度,适合于非稳态条件下的谐波分析.嵌入式系统应用验证了算法的正确性.  相似文献   

2.
基于Rife-Vincent窗的高准确度电力谐波相量计算方法   总被引:2,自引:0,他引:2  
非同步采样时,快速傅里叶变换应用于谐波分析容易造成频谱泄露和栅栏效应,影响谐波相量计算的准确度。分析Rife-Vincent窗的旁瓣特性,提出一种基于5项Rife-Vincent(I)窗双谱线插值FFT的谐波相量计算方法。与传统窗函数相比,5项Rife-Vincent(I)窗具有更好的频谱泄漏抑制特性,而双谱线插值算法能够对栅栏效应进行有效修正。仿真实验结果表明,在非同步采样条件下,提出的方法适合于非线性电路谐波相量分析,22次复杂谐波电流信号的频率计算相对误差仅为5.7×10-11%,幅值计算相对误差≤5.3×10-7%,初相位计算相对误差≤3.1×10-6%。  相似文献   

3.
氧化锌避雷器泄露电流检测的实现,是通过谐波分析提取全泄露电流的各次频率阻性分量,依据其变化可判断该装置在电网中的运行情况。快速傅里叶变换(FFT)算法进行谐波分析时很难做到整数周期截断和同步采样,由此引入的频谱泄露和栅栏效应会影响谐波分析的结果,采用加窗和校正算法可以改善谐波频率、幅值和相位的提取精度。选用一种利用距谐波频率点最近的幅值最大和次大的两根离散谱线的比值以修正谐波参数的比值公式校正算法,同时利用窗谱函数推导出了谐波频率、幅值和相位的修正公式。这种算法能够有效降低频谱泄露和栅栏效应以及干扰给谐波分析带来的不利影响。基于该FFT的优化算法,推导了加汉宁窗函数的实用修正公式,通过仿真比较了不同窗函数修正算法的计算精度,并在实验环境下验证了加汉宁窗的比值校正算法的有效性和易实现性,且已应用于氧化锌避雷器泄露电流检测的实际工程中,利用该校正算法精确检测泄漏电流谐波阻性分量,对氧化锌避雷器运行性能进行诊断。  相似文献   

4.
一种改进的Flat-top窗电力系统谐波分析算法   总被引:1,自引:0,他引:1       下载免费PDF全文
快速傅里叶变换(Fast Fourier Transform,FFT)是电力系统的谐波分析最常用、最容易实现的方法。但由于实际电网频率波动,FFT算法很难实现同步采样,谐波分析精度受到频谱泄漏与栅栏效应的制约。分析了Flat-top窗的旁瓣特性,建立了一种改进的加Flat-top窗FFT算法。通过分段校正方法,当频率偏移量小时,使用计算量小的加Flat-top窗FFT算法;当频率偏移量大时,利用相位差校正法对幅值进行插值修正。仿真结果表明:改进的Flat-top窗相位差校正法有效地抑制频谱泄漏和栅栏效应,  相似文献   

5.
在非同步采样和非整数周期截断时,采用快速傅里叶变换(Fast Fourier Transform, FFT)进行电力谐波分析时容易造成频谱泄露和栅栏效应,加窗插值可有效解决频谱泄露和栅栏效应问题。在分析了纳托尔窗的频谱特性的基础上,推理得出4项5阶纳托尔窗函数,通过自卷积运算得到纳托尔自卷积窗函数,并推导出四谱线插值校正公式。基于全相位傅里叶变换(all-phase FFT, apFFT)的相位不变性,利用理论频点附近的主谱线和旁谱线幅值的比值,推导出基于纳托尔双窗和ap FFT双谱线插值频谱校正分析法。由此提出了加窗插值FFT用于频率和幅值的检测,apFFT用于相位检测的新型组合算法。仿真结果表明所提新型组合算法在谐波检测时精度更高,抑制频谱泄露能力更强。  相似文献   

6.
由于快速傅里叶算法在实际应用中存在栅栏效应和频谱泄漏的问题,且用于测量介质损耗角的精度不高,该文提出一种基于混合卷积窗和改进全相位的高精度介质损耗角测量方法。用主、旁瓣性能更好的混合卷积窗对信号截断以减小频谱泄露,用全相位傅里叶变换具有的"相位不变性"以消除栅栏效应,并针对全相位傅里叶提出差分式相位校正方法。分别在基波频率变动、信噪比变化、谐波含量变化及采样点数的影响下对比验证,结果表明所提方法的检测精度高于加窗插值的傅里叶变换算法,尤其在非同步采样时,其优势更加显著。  相似文献   

7.
纳托尔自卷积窗加权电力谐波分析方法   总被引:4,自引:2,他引:2  
曾博  滕召胜 《电网技术》2011,35(8):134-139
在非同步采样下,采用快速傅里叶变换(fast Fourier transform,FFT)进行电力谐波分析容易造成频谱泄露和栅栏效应。窗函数加权可有效抑制频谱泄漏,但经典窗函数的抑制能力受旁瓣性能的制约。分析了纳托尔(Nuttall)窗的频谱特性后,提出了一种通过若干Nuttall窗自卷积运算得到的新型窗函数——.Nu...  相似文献   

8.
凯塞窗插值FFT的电力谐波分析与应用   总被引:6,自引:1,他引:5  
采用矩形窗、三角窗等基本窗函数和广义余弦窗函数对信号加权可减少非整数周期截断造成的频谱泄漏和栅栏效应的影响,但其效果受到窗函数固定旁瓣性能的制约。通过分析凯塞(Kaiser)窗函数的主瓣与旁瓣衰减可自由选择的特性,提出基于Kaiser窗插值快速傅里叶变换(fast Fourier transform,FFT)的电力谐波分析方法,建立奇次、偶次谐波求解的数学模型和实用的插值修正公式,推导信号基波与各次谐波频率、幅值、初相角的计算式。仿真和实测结果表明,Kaiser窗插值FFT方法设计实现灵活、抑制频谱泄漏效果好,据此研制的三相多功能谐波电能表的基波有功误差≤0.2%,基波无功误差≤1%,2~21次谐波分析满足GB/T14549—1993的A类谐波测量仪器要求。  相似文献   

9.
改进加窗插值FFT动态谐波分析算法及应用   总被引:2,自引:0,他引:2  
为减少加窗插值FFT谐波分析算法中的频谱泄漏和栅栏效应,本文分析了旁瓣最低与最速下降窗的频谱特性,提出了基于4项旁瓣最低与最速下降窗的插值FFT谐波分析算法,运用多项式拟合求出了简单实用的插值修正公式,减少了谐波分析时的计算量。仿真结果表明,在非同步采样和非整数周期截断条件下,本文所提出的谐波分析方法适合于弱信号和包含2~21次谐波的电力信号的精确分析。本文还给出了算法在三相多功能谐波电能表中的应用情况,验证了算法的有效性和准确性。  相似文献   

10.
李媛  王海云 《电测与仪表》2018,55(17):15-20
采用FFT谐波分析方法进行介质损耗角测量时,由于非同步采样会导致频谱泄露和栅栏效应,给介质损失角测量带来较大误差。为提高介损测量精度,文中提出基于Nuttall窗的三谱线插值介损测量方法。通过加Nuttall窗进行FFT得到离散序列,由三谱线插值进行频谱校正得到电压电流基波相位,根据两者相位差来计算介质损耗角。在基波频率波动、三次谐波含量变化、白噪音存在和采样点数变化的情况下测量介损角。仿真分析结果表明,Nuttall窗具有良好的旁瓣性能,能更好抑制频谱泄露,减小测量误差,所提方法测量介质损耗角时具有较高计算精度。  相似文献   

11.
张巧霞  畅刚  肖峥  曹晓庆 《中国电力》2015,48(1):115-120
为了协调220 kV与110 kV变电站布点关系,结合某省220 kV变电站三卷变压器10 kV低压侧直接向负荷供电(简称直供)的实际情况,对全省220 kV变电站进行统计分析,研究其直接供电的现状及运行中反映的问题,并有针对性地从技术和经济层面提出解决办法:对10 kV直供负荷供电时,将配电网规划和10 kV直供负荷相结合,优化配电网的结构,合理利用220 kV变电站的容量,由220 kV变电站向周边10 kV负荷系统直接供电,在确保供电可靠性的情况下,控制10 kV线路的送电距离。以上措施可挖掘现有电网的供电潜能,降低线路损耗,使电网布局更趋合理。  相似文献   

12.
智能变电站中高频开关电源技术应用   总被引:1,自引:0,他引:1  
高频开关电源因其性能可靠、体积小、效率高等优点,已广泛应用于智能变电站直流系统中,为变电站安全、可靠运行提供保障。首先简单介绍了交直流一体化电源系统,然后分别对直流充电模块、通信电源模块、UPS电源模块作了详细分析,重点研究了高频开关电源的N+1冗余技术和均流技术。通过研究发现,这2种技术的应用提高了高频开关电源模块的可靠性。高频开关电源能够满足智能变电站对直流系统可靠性的要求。  相似文献   

13.
发电机惯量是电力系统频率特性分析与在线应用的重要参数。基于发电机正常运行时机端有功功率和频率的类噪声信号可对发电机惯量进行实时辨识。然而实测数据质量存在的缺陷,导致现有算法对实测数据辨识效果较差。为解决该问题,本文以谱分析与系统辨识理论为基础,通过参考系统估计、模型参数方差估计、惯量方差估计三个步骤,建立惯量辨识结果的先验方差统计量,在进行辨识前对类噪声数据段进行评价和筛选,提升了惯量辨识的准确度。基于仿真数据和实测数据的数据评估筛选结果验证了本文提出方法的有效性。结果表明,先验方差较小的数据段,惯量辨识的准确度较高。  相似文献   

14.
基于暂态相关性分析的小电流接地故障选线方法   总被引:2,自引:0,他引:2  
小电流接地系统发生单相接地故障时,接地点产生的暂态故障电流包含了整个系统中全部的暂态故障电流特征量。非故障线路的三相暂态电流主要表现为对地电容电流,考虑到系统中存在的电感影响,健全线路中的两相电流差非常小,且波形与自身的暂态零序电流明显不相关,而故障线路的两相电流差与其暂态零序电流表现出明显的相关性。利用这一特征,首先对母线电压进行小波变换,通过三相近似系数比例AR检测配电网是否发生了单相接地故障,并找出故障相;然后,运用相关性分析比较各条线路的两相电流差与零序电流的相关性,能够正确地选出故障线路,文章通过MATLAB/SIMULINK建模,验证了该方法的正确性。  相似文献   

15.
Since started as a pilot project of regional power marketin June, 2003, East China power market has been actively andsteadily progressing, and has promulgated in succession amarket establishing program, market operating rules andspecifications for the functions of technical support systems.The technical support systems have been built up by stagesincluding the master station system in East China region and  相似文献   

16.
正Qingdao,China 7.16-19,2015 The International Conference on Electronic MeasurementInstruments(ICEMI)is the world's premier conference dedicated to the electronic measurement and test of devices,boards and systems that is covering the complete cycle from design,verification,test,diagnosis,failure analysis and process of manufactory and products  相似文献   

17.
目前配电网无功优化规划多采用网损灵敏度分析等方法来确定配电网候选无功补偿点,可能选择虚假高灵敏度节点,选点分布较集中。提出一种基于改进动态灵敏度选点的配电网无功优化方法,对灵敏度和负荷阻抗矩进行修正结合并进行层次聚类,避免选择虚假高灵敏度节点,使得选点分布均匀。通过实例仿真分析,验证了该方法的有效性,并对几种灵敏度选点方法进行了比较研究,得出了一些有益的结论。  相似文献   

18.
特高压变电站1 000 kV系统采用3/2主接线,由于导电主回路电阻不平衡度较大及特高压变电站输送容量大,导致3/2主接线系统存在较大幅值的不平衡环流,极端情况下个别断路器相电流有过零甚至反相现象。结合特高压南阳站,从理论上分析不平衡环流中零序分量及其产生原因;论述了大负荷运行期间零序环流给站内二次系统带来的显著问题和严重后果;提出保护装置采用两断路器合流、单断路器最小相电流制动零序电流元件和两断路器合流制动单断路器零序电流元件的几种解决方案。以期后续交流特高压工程对此有足够的重视,供设计、施工和运行维护借鉴。  相似文献   

19.
贾自杭  李燕青 《中国电力》2015,48(1):137-141
介绍了一种遵从于IEC 61850通信规约的智能变电站电缆局部放电在线监测系统。首先分析了电缆局部放电的检测原理及检测方法;然后设计了基于光纤同步触发和组网的监测硬件系统,以及基于用户数据报协议(user datagram protocol,UDP)和生产者/消费者模式的高速采集,并经过专家系统判别分析后能将监测结果通过IEC 61850规约实现共享的软件系统。最后用2种不同电极结构的局部放电类型,通过模拟实验对监测系统进行了检验。结果显示设备运行良好,监控平台能够准确地监视局部放电信号,能够识别出放电类型,并能通过IEC 61850通信规约将监测结果共享。  相似文献   

20.
给出了一种用于X射线管的负高压直流电源原理结构,针对其中的稳压控制回路进行了分析,建立了电压控制回路的数学模型,基于滑模变结构控制理论设计了稳压控制算法。仿真实验表明,所设计的稳压控制系统在稳态性能、动态性能和鲁棒性等方面满足实际要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号