共查询到19条相似文献,搜索用时 46 毫秒
1.
小波模糊神经网络在电力系统短期负荷预测中的应用 总被引:32,自引:10,他引:32
该文研究了基于小波模糊神经网络的电力系统短期负荷预测新方法。根据小波变换自适应可调时频窗的特点,利用小波分析对负荷样本做序列分解,对高尺度负荷分量采用常规预测方法,其他负荷分量则采用模糊神经网络处理技术,最后通过序列重构,得到完整的负荷预测结果。算例计算表明,新方法具有较高的预测精度和适应能力。 相似文献
2.
基于小波网络的短期负荷预测方法 总被引:5,自引:0,他引:5
提出一种基于小波网络的短期负荷预测模型,小波网络结合了小波变换良好的时频局域性质和神经网络的自学习能力,因此具有比神经网络更灵活的函数逼近能力,同时有效地改善了神经网络难于合理确定网络结构、存在局部最优等缺陷,算例表明,这种模型是快速准确的。 相似文献
3.
电力系统短期负荷预测的模糊神经网络方法 总被引:5,自引:0,他引:5
针对电力系统短期负荷预测问题,考虑到气象因素对负荷的影响,提出了一种模糊神经网络的短期负荷预测方法,首先根据评价函数选取相似日学习样本,然后利用隶属函数对影响负荷的特征因素向量的分量进行模糊处理,采用反向传播算法,对24点每点建立一个预测模型,提高了学习效能,适合在短期负荷预测中使用,具有较好的预测精度。 相似文献
4.
5.
电力系统短期负荷具有非常大的不确定性,而其日负荷信号的频谱具有连续变化的特性。从信号频谱分析角度,对日负荷信息进行建模分析,并通过小波变换,将日负荷数据分解为不同尺度上的投影子序列,用子序列作为小波神经网络的训练样本,然后用训练好的神经网络模型对电力系统的短期负荷进行预测。在Matlab仿真软件中,采用某市某线路的某日负荷数据对算法进行仿真验证,取得了较好的预测结果。 相似文献
6.
介绍电力系统负荷预测研究现状,将小波分析与神经网络相结合,构造了一种适用于非线性系统建模预测的小波神经网络。讨论运用小波神经网进行电力系统短期负荷预测的算法及在预测过程中对电网负荷数据进行预处理的方法。首次提出了RAN网新型网络结构并探讨了在电力系统短期负荷预测中的应用。分别应用2种方法对东北电网进行了72h短期负荷预测仿真。仿真结果表明,用小波神经网和RAN网进行建模预测比BP网训练步数大大减少,缩短了网络训练时间,提高了预测精度。 相似文献
7.
基于神经网络的电力系统短期负荷预测 总被引:1,自引:0,他引:1
电力系统短期负荷预测是电力生产部门的重要工作之一,利用BP神经网络进行电力系统短期负荷预测时,根据影响因素确定了模型构成,并对输入变量选择进行了讨论,典型算例的计算表明该方法是有效的. 相似文献
8.
提出一种基于模糊小波网络的短期负荷预测模型。模糊小波网络结合了小波变换良好的时频局域化性质、模糊推理和神经网络的学习能力,因此函数逼近能力大大提高。模糊小波网络由一组模糊推理规则和若干小波子网络组成,其中模糊规则的结论部分与某一特定尺度的小波子网络相对应。在学习过程中通过同时调整小波基函数的平移因子和隶属度函数的形状,使得模糊小波网络的精度和泛化能力大大提高。实例计算表明,这种模型是切实可行的。 相似文献
9.
提出一种基于模糊小波网络的短期负荷预测模型.模糊小波网络结合了小波变换良好的时频局域化性质、模糊推理和神经网络的学习能力,因此函数逼近能力大大提高.模糊小波网络由一组模糊推理规则和若干小波子网络组成,其中模糊规则的结论部分与某一特定尺度的小波子网络相对应.在学习过程中通过同时调整小波基函数的平移因子和隶属度函数的形状,使得模糊小波网络的精度和泛化能力大大提高.实例计算表明,这种模型是切实可行的. 相似文献
10.
11.
地区电网短期负荷预测系统的研究 总被引:4,自引:0,他引:4
本文根据吉林市电网的实际情况,研究开发了一个地区电网短期负荷预测系统。该系统包括多种负荷预测方法,可以使运行人员根据负荷变化的具体情况选择预测方法或采用几种方法的组合进行加权预测。文中对各种方法的预测结果进行了分析与对比,并在此基础上分析了影响负荷影响精度的主要原因。软件包具有良好的人机界面,实用性强,已在吉林市供电公司运行较长时间,为运行人员的负荷预测工作提供了有力的支持。 相似文献
12.
13.
基于小波分解和人工神经网络的短期负荷预测 总被引:25,自引:9,他引:25
提出了一种基于小波分解和人工神经网络(ANN)的电力系统短期负荷预测方法.通过小波变换把负荷序列分解为不同频段的子序列,再对这些子序列分别采用相匹配的人工神经网络模型进行预测,最后综合得到负荷序列的最终预测结果.在所提出的方法中小波分解能够提取负荷的一些周期性和非线性特征,并对其进行进一步细分,根据其子序列各自所具有的规律采用相应的预测方法;而ANN对于处理非线性及无法显示明确规律的问题具有优势.经实例验证,与传统方法相比该方法具有很高的预测精度和较强的适应能力. 相似文献
14.
一种电力系统短期负荷预测的新方法 总被引:5,自引:0,他引:5
依据模糊聚类理论,提出一种短期负荷预测的新方法,应用相应的隶属度来描述负荷与影响负荷因素之间的关系。实践表明:该方法可以较多的考虑各种影响因素,从而较大地提高了预测的精度。 相似文献
15.
16.
基于支持向量机的电力系统短期负荷预测 总被引:27,自引:6,他引:27
对将径向基函数(Radial Base Function,RBF)作为核函数的支持向量机(Supporr Vector Machine,SVM)方法应用于短期负荷预测进行了研究.作者使用基于SVM的回归估计算法建立了回归估计函数表达式,给出了SVM网络结构;采用江苏省某市的实际负荷数据,按照不同的负荷日属性和历史负荷数据进行样本选择,使用LIBSVM算法和适当的核函数进行了负荷预测,并将该预测结果同由时间序列及BP神经网络方法得到的预测结果进行了比较,结果表明,所提出的预测方法有较高的精度. 相似文献
17.
基于因素影响的电力系统短期负荷预报方法的研究 总被引:27,自引:4,他引:27
文章深入研究了天气和特别事件因素对电网负荷的影响;建立了因素影响的负荷预报模型;确定了有效的算法;形成了实用化应用软件;并应用取华北地区京津唐电网。实际应用中,该方法提高了短期负荷预报精度,短期负荷预报软件达到真正的实用化水平。 相似文献
18.
扩展短期负荷预测的原理和方法 总被引:15,自引:4,他引:15
在电力市场环境下,制定和调整当日负荷计划的周期缩短,负荷预测系统需要在留有2h时间裕度的情况下,对当日未知负荷进行重新预测。该文提出的扩展短期负荷预测方法可以满足这种要求,并在文中仔细阐述了该方法的应用背景,理论及概念,给出了实现方案,最后,以实际系统数据说明了该方法的必要性和实用性。 相似文献
19.
应用小波分析进行短期负荷预测 总被引:20,自引:4,他引:16
顾洁 《电力系统及其自动化学报》2003,15(2):40-44,65
小波分析是一种新兴的数学工具,它能任意地提取短期负荷序列的细节。通过使用小波分析,可以在任何水平上分析短期负荷序列,它对信息成分采取逐渐精细的时域与频域处理,尤其对突发与短时的信息分析具有明显的优势。本文将小波分析引入了短期负荷预测,针对电力系统本身具有的负荷以天,周,年为周期发生波动的特点,使用周期自回归模型有选择的对分解序列进行预测,并对直接使用周期自回归(PAR)模型的预测结果及先使用小波分析处理的预测结果进行了比较,实例显示这种方法提高了预测的精度。 相似文献