首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
刘军  甘乾煜  张泽秋  吴琼 《电网技术》2023,(5):2098-2108
储能应用于风电功率波动平抑时,存在有效平抑波动功率与减小储能电池负担难以协调的问题,导致风电功率波动平抑效果不佳或储能电池负担增大。针对以上问题,提出了一种改进的自适应滑动平均滤波算法,在满足1min和10min双时间尺度的风电并网功率波动率标准下,对风电功率进行自适应分解,不仅获得了满足风电并网标准的并网功率参考值,还减小了需要储能电池平抑的波动功率,然后采用双磷酸铁锂电池来平抑波动功率,同时考虑荷电状态(state of charge,SOC)反馈,通过检测储能电池SOC的值,判断其是否达到充电上限或放电下限,以此防止过充过放电对储能电池运行寿命的影响,运用雨流计数法寿命评估模型对储能电池运行寿命进行评估。算例表明,所提算法能够根据风电功率波动率的大小在线实时调节滑动窗口的大小,实现风电功率的分解,从而有效地平抑了风电功率波动,并且降低了储能电池的负担,延长了其使用寿命。  相似文献   

2.
为减少风电波动率,提高并网可靠性,提出一种基于模糊经验模态分解(empirical mode decomposition,EMD)的储能系统平滑风电功率波动的控制策略。采用经验模态分解对风电功率进行滤波,低频分量并网,高频分量并入电池储能系统(battery energy storage system,BESS)。使用平滑后风电波动率和储能电池荷电状态(state of charge,SOC)作为约束条件,利用模糊控制算法,自适应在线调整EMD滤波阶数,通过模糊自适应控制器,能够更好地平滑风电波动。对比其他平抑风电功率储能控制策略,仿真实例表明,该方法可以有效地平抑风电功率波动,避免储能电池过充过放,稳定储能荷电状态。  相似文献   

3.
风电波动性和随机性严重影响电力系统安全稳定性。为了平抑风功率波动,提出了一种基于模型预测控制(MPC)原理的平抑风电功率波动的电池储能控制方法。该方法利用风电场超短期功率预测信息,以并网风电功率的波动范围、电池储能荷电状态(SOC)、储能出力大小等为约束,通过滚动优化实现对储能的优化控制。算例表明,该方法既能有效平抑风电功率波动,又能超前控制储能SOC值,维持储能的平滑能力,避免储能过充过放。  相似文献   

4.
提出了一种光伏(PV)的最大功率跟踪工作点控制和混合储能系统(HESS)协调平抑光伏并网功率波动策略,通过PV和HESS间的密切配合,能有效将PV并网功率波动抑制在电网可接受范围内。采用了多目标非线性约束模型对HESS中电池和超级电容的充放电功率进行优化调度,调度过程中充分考虑了HESS的寿命、偏离校正以及充放电效率;给出了基于滑动平均算法的PV的最大功率跟踪工作点动态控制方法。此外,采用K均值聚类算法构建了3种典型的PV功率波动场景,对所提策略和利用HESS平抑PV功率波动的传统策略进行了对比分析,结果表明:所提策略既能取得良好的平抑PV功率波动效果,还能降低HESS的运行损耗、延长其使用寿命。  相似文献   

5.
为平抑风电功率正负向波动、减少储能系统充放电切换次数、延长储能系统使用寿命、降低储能成本,采用从电动汽车上退役的动力电池,建立两组退役电池储能系统(RBESS),分别处于充放电状态,根据风电功率短期预测结果,交替平抑正负向波动。以RBESS成本和平抑波动可靠性最优为目标函数,采用带有精英策略的非支配遗传算法(NSGA-Ⅱ)进行容量配置。以达坂城某风电场的数据进行仿真,验证了所提方法的可行性:两组RBESS可有效平抑风电功率波动并降低充放电切换次数,延长使用寿命,降低储能成本。  相似文献   

6.
在风力发电系统中配置一定容量的储能系统,可以有效平抑风电功率波动。提出一种新的基于混合储能的风电功率平抑控制策略,采用滑动平均值算法获取风电输出期望功率,蓄电池和超级电容构成混合储能补偿系统。采用Mamdani型模糊控制器改变滤波器时间常数,实现可变滤波;考虑到滤波器的延迟效应,利用Takagi-Sugeno型模糊控制器调整蓄电池参考功率值,从而实现混合储能系统内部的协调控制,优化补偿功率分配。同时,提出基于储能系统荷电状态的风储协调控制机制,将风机桨距角的功率调节与储能功率平抑相结合,协同工作实现风电功率的良好平抑。仿真结果表明该协调控制策略具有良好的风电功率平抑效果。  相似文献   

7.
为解决可再生能源的间歇性和波动性,保证微电网各发电单元之间功率平衡,加入复合储能(HESS)是行之有效的方法。提出将功率型超导储能(SMES)和能量型钒流电池(VRB)储能组成复合储能平抑含风力发电的微电网功率波动。针对现有两级滤波法的缺点,加入荷电状态(SOC)反馈,提出基于优化控制层和协调控制层的分层控制。仿真比较了两级滤波法和分层控制法平抑风电功率波动的效果及各储能SOC的动态变化,结果验证了SMES和VRB复合储能分层控制策略的有效性。  相似文献   

8.
基于荷电状态动态调整的储能电站容量规划   总被引:2,自引:0,他引:2  
储能系统平滑风电功率波动可以有效提高风电输出功率的稳定性,但昂贵的储能成本却制约着储能系统的整体性能,由此储能容量优化成为解决储能成本与平抑波动能力相互制约的方式之一。以储能系统荷电状态(SOC)为参量,提出基于可变功率修正系数的储能系统充放电控制策略,在储能系统有效平抑风电功率波动的同时,避免出现过充过放现象,保证储能系统的运行寿命。以储能系统多种成本之和最小为目标,构建计及风电场投资、运行成本和储能运行寿命的储能容量优化模型,并采用粒子群优化算法对模型进行求解。仿真分析结果验证了所提方法的有效性。  相似文献   

9.
侯力枫 《热力发电》2020,49(8):134-142
风电场并网处布置储能系统能改善并网经济性,平抑风电并网功率波动。然而,储能出力优化电网运行性能受储能系统的功率、容量和能量状态等诸多因素影响。本文引入储能电池出力能力指标,设计了保护储能电池和保障并网功率平衡能力的多目标优化模型,提出一种基于储能荷电状态模糊动态调节的模型预测控制策略,在整体上保证储能出力最小水平,在局部储能高充/放电区域的时段内提高储能充/放电出力能力,并将本文方法与传统模型预测方法进行仿真对比。结果表明,在相同储能配置比例下,本文方法能有效平抑风电功率波动,综合指标均优于传统模型预测方法,在优化负荷功率波动的同时也提高了储能系统的功率支撑能力,平衡了储能输出和平滑能力的矛盾。  相似文献   

10.
由于一阶低通滤波算法在实际工程中具有较好的实用性,因此用其进行风电功率波动的平抑。首先,应用希尔伯特黄变换(HHT)获取风电的主频率,以此求取初始滤波时间常数。然后,滤波时间常数最小作为目标,以风电并网波动率等为约束,动态调整滤波时间步长,从而实现对风电波动的平抑。再者,以混合储能经济性最优为目标,同时兼顾充放电功率和SOC等约束,实现储能总载荷在蓄电池和超级电容器之间的分配。最后,通过算例验证了控制策略的有效性。  相似文献   

11.
采用燃料电池/电解槽/储氢罐/超级电容构建混合储能系统来平抑风电功率的波动性,实现风电平滑并网.针对风电功率的波动特性,结合风电并网波动率标准,提出自适应VMD算法,实现风电功率的自适应分解,得到风电并网功率和混合储能系统功率指令,根据燃料电池和电解槽出力需求,结合超级电容的荷电状态和储氢罐的储氢状态,提出一种能量管理控制策略,实现储能系统内部功率分配.算例结果表明,所提算法能自适应实现风电功率的最优分解,所提控制策略能完成储能系统内部功率的合理分配并有效地平滑风电出力波动,同时保证超级电容的荷电状态、储氢罐的储氢状态工作在合理区间.  相似文献   

12.
采用自适应小波包分解的混合储能平抑风电波动控制策略   总被引:5,自引:0,他引:5  
采用蓄电池和超级电容构建混合储能系统以平抑风电场输出功率波动,实现风电平滑并网。首先,针对不同风电出力场景下风电功率的波动特性,结合风电并网波动标准和混合储能系统性能特点,实现风电功率的自适应小波包分解和储能初级功率分配,得到风电并网功率和混合储能初级功率指令;其次,在混合储能系统内部,根据超级电容的荷电状态,利用模糊优化控制对蓄电池和超级电容的功率指令进行二次修正,得到优化后的混合储能功率分配指令。算例分析表明,所提策略能够自适应地实现风电功率的最优分解和合理分配,确保混合储能荷电状态工作在合理区间,有效改善风电输出功率波动平抑效果,保证混合储能系统长期稳定运行。  相似文献   

13.
为平滑风电输出功率,通常将功率型储能元件和能量型储能元件结合成混合储能系统与风电系统相连。为了提高混合储能系统的灵活性和经济性,对一种基于参数优化变分模态分解(Variational Mode Decomposition, VMD)的混合储能系统控制策略进行了研究。采用粒子群算法确定VMD算法中K值(分解模态数)和α值(二次惩罚因子)的最优值组合,预设K值和α值将不平衡功率信号经VMD分解后在蓄电池和超级电容之间进行合理分配,最后采用模糊控制对混合储能系统的荷电状态进行优化。仿真结果表明,所提方法既能实现储能元件间合理的功率分配,有效平抑风电波动,又能使荷电状态稳定在一定区间,实现混合储能系统长期安全运行。  相似文献   

14.
Ming Ding 《电力部件与系统》2017,45(12):1265-1274
For the purpose of smoothing wind power fluctuations by using a battery–supercapacitor hybrid energy storage system (HESS), this paper designs a novel control strategy based on a self-adaptive wavelet packet decomposition technique and a two-level power reference signal distribution method. According to the fluctuation characteristics of wind power in different output scenarios, and considering the grid regulations on wind power volatility, the proposed technique can yield wind power grid-connected values adaptively. Then, the HESS power reference signals will be given by a two-stage reasonable distribution method based on the performance characteristics and the state of charge of the HESS. Simulation results show that the proposed control strategy can effectively improve the performance of wind power fluctuation smoothing and ensure that the HESS works within a reasonable range to guarantee the long-term stable operation of the HESS.  相似文献   

15.
由锂电池和超级电容器组成的混合储能系统(HESS)具有响应快速、短时吞吐功率能力强的优点,可以很好地作为电网的分布式储能设备补偿电网频率波动。提出在储能单元体系优化匹配下,基于荷电状态(SOC)反馈的自学习平滑储能控制策略,自主归纳更新混合储能的控制规则,利用虚拟同步电机(VSG)技术来解决可再生能源功率波动引起的电网频率偏移问题。最后,在Matlab/Simulink中建立了光储微网模型。通过仿真验证了配置混合储能单元的VSG能有效模拟出同步电机的转动惯量与一次调频特性,提高了并网系统的稳定性。  相似文献   

16.
风能接入电网后会对系统频率产生负面影响,制定合理的风储联合调频策略可以减小风机并网引起的频率波动.为了准确分析风储联合调频策略的经济性,首先结合电网、风机与储能系统特性,考虑电网与风机的惯性后对风储联合系统进行建模,模拟了风储联合调频时的频率响应过程.然后确定调频功率、风功率及系统频率的关系,结合调频效果确定调频系数,并改进了备用容量的配置策略与调频功率的分配策略.最后以调频成本最小为目标建立了优化模型,使用粒子群优化算法对储能系统的最优配置进行求解.算例结果表明,采用的风储联合调频策略及储能系统优化配置可以有效降低调频成本,提高风储联合系统的经济性.  相似文献   

17.
基于机会约束规划的混合储能优化配置方法   总被引:5,自引:1,他引:4  
微电源的容量配置问题直接关系微网的电能质量和经济性。考虑到风电的随机性,提出了基于机会约束规划的混合储能容量配置方法。该方法考虑了混合储能装置的功率出力和荷电状态约束,以装置成本最低为目标,采用遗传算法求解,得到风电输出功率波动不超过某一区间的置信度与混合储能最佳配置成本间的关系,从而为配置混合储能容量时为在电能质量和经济性间取得适度折中提供了定量依据。此外,该方法针对风电波动时间特性对混合储能装置进行功率分配,依据荷电状态限制设计了模糊控制策略,修正储能装置的功率参考值,以达到延长使用寿命的效果。仿真结果验证了该方法的有效性。  相似文献   

18.
在考虑风电功率不确定性的基础上,提出一种基于频谱分析确定混合储能系统(HESS)容量的方法,该方法充分利用了超级电容器和蓄电池的优势互补特性,基于此提出储能最优运行策略。利用离散傅里叶变换分解风电不平衡功率得到其频域信息,并利用HESS对不平衡功率进行平抑;提出一种最优截止频率确定方法,并确定HESS中蓄电池和超级电容器的容量大小;基于所确定容量建立以利润最大为目标的机会约束规划储能运行策略模型,并采用整合蒙特卡罗的遗传算法进行求解,从而确定储能的最优运行策略。通过实际数据分析验证了所提模型和方法的有效性。  相似文献   

19.
低电压穿越(Low-Voltage Ride Through,LVRT)是影响光伏并网发电系统稳定运行的重要因素。针对这一现状,文中提出了一种混合储能(Hybrid Energy Storage System,HESS)的控制策略来解决,HESS由蓄电池储能系统(Battery Energy Storage System,BESS)和超导磁储能系统(Superconducting Magnetic Energy Storage,SMES)构成。采用低通滤波的方法将不平衡功率分频,为HESS分配功率指令。当光伏并网发电系统正常运行时,HESS用于平抑功率波动。当出现短路故障时,采用无功电流注入的策略使光伏逆变器发出无功功率,此时不平衡功率仅由SMES吸收,BESS不参与运行。通过SMES与光伏逆变器的配合,顺利实现LVRT过程。所提方法能够提高光伏发电系统的低电压穿越能力,减小功率波动对电网的冲击,有一定的实际应用价值。  相似文献   

20.
基于合作博弈的微网储能容量优化配置   总被引:1,自引:1,他引:0  
合理配置储能容量在平抑清洁能源功率波动、辅助稳定电网频率等方面具有重要意义。针对含有风电、光伏发电的微网,兼顾储能设备参与电网一二次应急调频,利用储能空闲资源参与电网调频,同时考虑了微网的电量成本、投资维护成本等因素,以微网每天综合费用最低为优化目标,基于合作博弈建立微网均衡模型,利用粒子群和内点算法求解各微网最优容量配置。算例结果验证了模型与方法的合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号