首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To discuss the modes of dielectric barrier discharge(DBD) between needle-to-plane electrodes in air,DBD is generated and observed on a needle-to-plane device at atmospheric pressure air.Fast images of the DBD are taken by using a charge couple device(CCD) cinema with a macro lens,while the electrical and photo-electricity waveforms of the DBD are recorded.The current waveforms show that under an applied voltage of 3 kV,there are numerous short current pulses in both positive and negative half-periods of discharges.However,under 6 kV,there are still the numerous short current pulses in the positive half-periods,but only one wide current pulse in each negative half-period.This difference is also found in the photoelectric signals.The streamer,corona and glow discharges are observed from the images of the discharges at different applied voltages.The structure of glow discharge in the negative period is exactly the same as that of the low pressure glow discharge.However,in the positive period of discharge there is always a streamer.In the negative period of discharge,while the applied voltage increases,the transition from corona to glow discharge is observed.The progress of a transition between streamer and glow discharge at 6 kV during one period is analyzed.The glow discharge appearance is determined by two factors: the discharge current is limited to a certain extent by the dielectric layer; the charges deposited on the dielectric layer during the last half period enhance the intensity of the electric field.At an insufficient applied voltage,the cathode drop leads to no glow discharge,but Trichel pulses.  相似文献   

2.
This work is devoted to experimentally study the characteristics of discharge plasma in high power xenon flashlamps.In the experiments,plasma channel profiles are captured by using a high speed CCD camera,and the radiation energy of the flashlamp is obtained by a pyroelectric energy meter.Voltage and current curves are recorded to shed light on the plasma characteristics.With these diagnostic methods,typical factors influencing the evolution process of plasma channel are studied,including the external electric field and the pre-ionization.The electric potential distribution in the flashlamp influence the plasma channel characteristics the most significantly.The plasma channel pattern for the cases with grounded wires is different from that with ungrounded metal wires.When the wire is ungrounded,it is the coupling voltage between the metal wire and the flashlamp that influences the development of plasma channel.In terms of radiation efficiency,it is proven that there is an optimal interval within 200~300μs between the pre-ionization pulse and the main pulse.  相似文献   

3.
The paper reviews the results of investigations of the low-current atmospheric-pressure discharges in gas flow.The attention is focused on the discharges in electrode systems of coaxial plasmatron and of so-called gliding arc.It is demonstrated that a considerable fraction of discharge current is carried by a plasma column operating in a regime of normal glow discharge with occasional transitions to spark.The nature of glow-to-spark transition is discussed.Beside the plasma column,a weakly ionized gas fills in the interelectrode gap and forms a plasma jet at the exit of electrode system.The jet contains the active chemical particles that play important role in different discharge applications.The applications in plasma assisted combustion systems,for surface treatment with a usage of plasma jet,and for biology and medicine are considered.  相似文献   

4.
The mechanism of micro-hollow cathode discharge at atmospheric pressure is investigated through simulations using two-dimensional fluid model combined with a transport model for metastable atoms.In the simulations,electric potential,electric field,particle density,and mean electron energy of the discharge are calculated.The results show that the two characteristic regions of the discharge,i.e.cathode drop and negative glow can be distinguished in the simulation.The cathode drop is characterized by strong electric field and high mean electron energy,while quasi-neutral plasma of high density and exists in the negative glow.The peak value of electron density can reach the order of 1017cm-3.The electron temperature varies from several eV to tens of eV.The influence of cathode dimension on the discharge characteristics is also investigated.  相似文献   

5.
The dynamic characteristics of space charge in nanocomposite of low-density polyethylene (LDPE) mixed with inorganic nano- fillers. Different from previous qualitatively theoretical works, we investigated the influence of trap depth, trap volume charge density and injection barrier height on the space charge and the electric field distribution in the nanocomposite under a DC external electric field (100 MV/m) systematically and quantificationally, through numerical simulations based on a bipolar charge transport model. The simulation re- sults showed that, the increase of trap depth would severely distort the balanced electric field distribution with the highest and the lowest electric field of 119 MV/m and 47 MV/m, respectively. It is concluded that the introduction of nanofillers creates more deep traps, which would block space charges by capturing most of them in the vicinity of electrode and hence reduce the local electric field largely. Further theoretical analysis of the simulation indicates that both the high permittivity and the low local electric field of the nanocomposite contri- buted to the increase of injection barrier height, and almost no charge could overcome an injection barrier higher than 1.25 eV. At last, a mechanism of space charge suppression in the LDPE nanocomposite was presented.  相似文献   

6.
唐炬  谢彦斌  张晓星  周谦 《高电压技术》2012,38(8):1828-1833
Radio frequency(RF) measurement has become a hot issue for partial discharge detection.However,its application is hampered by the difficulty to establish a relationship between the RF measurements data and apparent discharge quantity.In this paper,on the basis of an experimental model of metal protrusion,the relationship between the results of RF measurement and pulse current method(IEC 60270) was investigated.The energy,double integration,peak voltage,peak-peak voltage and the area of RF signals were plotted versus either the apparent discharge quantity or the square of the apparent discharge quantity in order to evaluate the optimal regression curve.At the same time,the impact of voltage and the distance between protrusion and plate were also investigated.The results indicate that the optimal match to a linear regression curve can be gained by plotting the RF signal energy versus the square of the apparent discharge quantity.The variation of voltage has no significant impact on the regression curve;that is,data from different voltages match one line.However,when the distance between protrusion and plate is changed,the slope of the regression curve changes accordingly;the same energy corresponds to a bigger discharge quantity.The results are significant enough to be applied in the estimation of the discharge quantity by measuring RF partial discharge signals.  相似文献   

7.
Discharge branching is a general phenomenon in atmospheric-pressure air,dense gases,and two-phase mixtures(TPMs).In this work,an ultraviolet imaging device is utilized to investigate the branching of positive pulsed discharges in TPMs.Comparison among the captured images indicates that the branching is caused by the voltages and the macropartilces in the discharge channels combining together.The interaction of macroparticles with ions,electrons or photons is one reason for the branching behavior of pulsed discharges.The generation of electrons at the discharge front closely relates to the work function of dielectric macroparticles,which is a key parameter influencing the electron-emission ability of macroparticle surfaces.The electric field alteration under various applied voltage in TPMs,which is calculated by a two-dimension finite element method,is the other reason for the guiding effect of macroparticles on the streamers compared with in the air.  相似文献   

8.
The valve side windings of converter transformers bear AC, DC, impulse, and reversal-polarity voltages during operation, which could result in serious insulation problems of the equipment. By performing experiments with surface discharge model of oil-paper insula- tion at 80 ℃ under combined AC-DC voltage for 200 h, we studied the spectrums and statistical parameters of partial discharges at different discharge stages. Furthermore, some fingerprint parameters were calculated in order to estimate the development situation of par- tial discharge, while the characteristic gases dissolved in the transformer oil were measured by gas chromatography. The surface discharges in the experiments were observed using a high speed camera, and a full discharge process could be marked off into four stages as follows. ①The elementary stage. When a partial discharge occurs near electrodes, electrical charges are injected into the region near electrodes and causing bubble generation. ②Due to their high resistivity and low dielectric constant, the bubbles would bare the major part of the voltage applied to samples. Therefore, discharge happens inside the small bubbles, and it emits a lot of light. ③Micromolecules of gas are produced in discharge, and further ionization in the transformer oil takes place simultaneously when high-energy electrons collide with oil molecules. ④The carrier charge moves forward to electrodes driven by the applied electric field, till they neutralize with the charge from electrodes, and hence discharge channels are formed subsequently.  相似文献   

9.
杜伯学  王立 《高电压技术》2013,(8):1852-1857
The diagnosis of water trees of cable insulation is of great importance as the water-treeing is a primary cause of aging breakdown for the middle voltage cables. In this paper, it is described how the water-tree-aged 10 kV XLPE cables were diagnosed. The cables were subjected to electrical stress of 5.9 kV/mm and a thermal load cycle in a curved water-filled tube for 3, 6 and 12 months of aging in accor- dance with the accelerated water-tree test method. The aged cables were used as the samples for water-tree diagnosis. First, the water-tree degraded cable, was charged by a DC voltage, and then the cable was grounded while a pulse voltage was applied to it for releasing the space charge trapped in the water trees. The amount of the space charge, which corresponds to the deterioration degree of the water trees, was calculated. The effects of DC voltage amplitude, pulse voltage repetition rate and aging conditions on the amount of the space charge were studied. Obtained results show that the amount of the space charge has a positive correlation with the applied DC voltage and the ag- ing time of the cables, and that a peak value of space charge appears with the increase of the pulse voltage repetition rate. An optimum pulse voltage repetition rate under which the space charge can be released rapidly is obtained. Furthermore, the releasing mechanism of space charge by the pulse voltage is discussed. Accumulated results show that the presented method has a high resolution for the diagnosis of water tree degradation degree and is expected to be applied in practice in future.  相似文献   

10.
陈伟根  陈曦  谢波  刘军 《高电压技术》2013,(8):1837-1844
Numerous equivalent circuits for cavity discharges have been developed, yet most of these models cannot provide simulated sig- nals that precisely reveal the variability of the discharge’s characteristic parameters, such as repetition rate, magnitude and phase of discharges, which makes them not suitable for intensive studies of discharge process. Therefore, using Simulink code, we theoretically ana- lyzed and studied the classical equivalent circuits of cavity discharges, as well as the influence of circuit components on simulation results, and then proposed a novel equivalent circuit, the key parameters of which were determined according to the physical behavior of cavity discharges. In the novel equivalent circuit, the repetition rate can be changed by discharge resistance, inception and residual voltages; meanwhile the phase of discharge can be controlled by adjusting the parameters of shunt resistance. Furthermore, a controlled current source as a function of space charge is introduced in the equivalent circuit. Compared with the former ones, the simulated signals obtained by this novel model are better approximation of real signals. This work could be referred by latter studies of the characteristics and the me- chanisms of cavity discharge in oil-paper insulation.  相似文献   

11.
An experimental device is used to study the characteristics of dielectric barrier discharge(DBD)plasma excited by high voltage sub-microsecond pulse power in atmospheric air.Glass,polytetrafluoroethene(PTFE)and plexiglass are used as dielectric barrier materials.Comparatively homogeneous discharge is obtained within 130 mm diameter area in atmospheric air using the three dielectric materials with gap distances of 4.5 mm,6.5 mm and 6.5 mm,respectively.There is no filamentary discharge observed by naked eyes or by camera with the exposure time of 0.25 s.Gas gap voltage,discharge current,discharge power density,etc.are calculated by using Liu’s equivalent circuit model for pulsed DBD.These parameters are used to study the DBD characteristics.Typically,current varies from tens of amperes to hundreds of amperes in atmospheric air DBD excited by sub-microsecond pulses.The peak power can reach to MW order of magnitude.The average power surface density of 1.0 W/cm2and the average electron density of 1011cm 3can also be obtained in the discharge.Rotational and vibrational temperatures,approximately 400 K and 2 650 K,respectively,are obtained by using the emission spectrum of the discharge.This is the basic work performed for a better understanding of the characteristics of atmospheric air DBD plasma excited by high voltage sub-microsecond pulsed power source.  相似文献   

12.
To compare the formation mechanisms of He and Ar atmospheric pressure plasma jets(APPJs),an intensified charge-coupled device(ICCD)are utilized to observe the dynamic process of APPJ.The experimental results show that,He APPJ is first ignited,which is independent of the dielectric barrier discharge(DBD)between the two wrapped electrodes when the high voltage placed at the downstream.The intensity and APPJ length under positive discharge pulses are bigger than that under negative discharge pulses due to the space charge effect.The He APPJ is formed by the DBD development when the high-voltage electrode placed at the upstream side of tube.However,the plasma plume in Ar APPJ is formed by the propagation of DBD whatever the high-voltage electrode is arranged on upstream or downstream side of ground electrode.The difference in formation mechanism between He and Ar APPJs is mainly caused by the gas properties.Moreover,during the discharges,Ar tends to lead to thermal instability and electron Maxwellian instability.  相似文献   

13.
Space charge issues have raised many attentions in recent years,especially in high voltage direct current(HVDC)application.Space charge accumulation in insulation system will give rise to acceleration of ageing and even cause premature failure of the material.However,from another angle,space charge might be also considered as a diagnostic tool of ageing for insulation materials.In this paper,a trapping-detrapping model has been developed to estimate trapping parameters of cross-linked polyethylene(XLPE)cable sections,which were taken from different HVAC operation conditions of 12 years and 8 years.The results reveal that,for both cable sections,samples from the inner location have the greatest trap density and the deepest trap depth.Additionally,breakdown strength tests and FTIR(Fourier-transform infrared)measurements on those samples have been carried out.From FTIR measurement results,the degree of oxidation among three layers could be found by the carbonyl index values.The oxidation degree of aged cable at the outer layer is higher than that at the other two layers probably because of the most sufficient contact with oxygen.Also,it has been noticed that the results from these measurements show some correlations with the estimated trapping parameters,especially for breakdown strength.  相似文献   

14.
C.Zhou  G.Chen 《高电压技术》2015,41(4):1167-1177
Polyethylene is one of the widely studied polymeric insulation materials,which have been used extensively for cable insulation.One of the major issues related to polymeric materials is its easy formation of space charge,a high chance to cause electric field distortions.This phenomenon is more significant under high voltage direct current(HVDC)stresses.Space charge can also be observed under high voltage alternative current(HVAC)stresses but with much less intensity due to the limited charge injection period and the effect of charge recombination caused by the constantly variance of the external fields.When considering the situation of an AC voltage combined with a DC offset,a possible scenario in HVDC technology,there was little research on charge dynamics in the insulation in terms of both experimental and simulation work.In this paper,a numerical simulation based a bipolar charge injection/transport model is used to obtain characteristics of space charge in polyethylene under the combined AC and DC high voltage at room temperature.The bipolar charge injection/transport model,which is widely used in HVDC space charge simulation,is applied in the combined conditions.The overall applied voltage,consisted of root mean square(RMS)values of the AC voltage and DC voltage,is kept the same,while the DC component’s voltage ratio and AC component’s frequency are changed respectively,to illustrate their effects on the space charge dynamics within the insulation under combined electric fields.The simulated charge distributions present notable differences when DC offset is increasingly added in,while relatively small differences when AC component’s frequency altering,especially for the cases whose frequency exceeding 0.5 Hz.  相似文献   

15.
Beyond Earth,electrical discharges have also been observed,or postulated to exist,on other bodies of the Solar System.In this work the state of the art of research on electrical discharges in the atmosphere of several planets and one moon is reported.The main charging mechanisms as well as the discharge characteristics and its effect on the atmosphere are discussed.Some of the current research activities being carried out by the author’s team are also reported.The lab simulations can achieve realistic plasma parameters;for example:the arc temperature in the lab was found to be 33 000 K which compares favourably with field observations reporting temperatures~30 000K.The lab work with a synthetic Mars atmosphere allow us to predict that the conjunction of electrostatic discharges and the presence of water ice could lead to the production of methane with an efficiency of up to 1021molecules per joule of applied energy.  相似文献   

16.
The plasma characteristics of a lightning discharge channel are reviewed.The spectrum of the natural lightning is investigated by employing the slit-less spectrograph.It is found that the spectrum characteristics are closely related to the intensity of the lightning discharge.The lines in the lightning spectrum are classified into essential lines and characteristic lines,according to the characteristics of lightning spectra with different intensities.The characteristics of the lightning channel and the radiation of the lighting plasma are analyzed in the visible and infrared regions.It is shown that,the visible spectrum of lightning is determined by the radiation generated from the early stage to the development of lightning,while the near-infrared spectrum is determined by the radiation generated after current of lightning reaches the peak.The channel temperature and the electron density are calculated using the information obtained from the lightning spectrum.Both the temperature and the density decrease with the increasing length of lightning channel.Moreover,X-rays and neutrons are produced in the process of lighting mainly due to the pinch effects.  相似文献   

17.
In this paper,the influence of ammonia admixture on argon discharge properties is investigated.Electrical measurements,as well as ten-nanoseconds-exposure photographs taken by an intensified charge-coupled device(ICCD)camera,are employed to confirm the existence of atmospheric pressure glow discharge(APGD)in Ar/NH3mixture.The breakdown voltage and transition voltage between APGD and filamentary discharge are studied at various ammonia concentrations.The results show that a small amount of NH3can lead to APGD due to the Penning ionization of NH3molecules by metastable argon,and the breakdown voltage increases with the growth in NH3concentrations owing to the electronegative feature of NH3.The optical emission spectrum of Ar/NH3APGD is analyzed.Besides,gas temperature is estimated at 327 K by the diagnoses of the OH(A-X)(0,0)band of the spectrum.  相似文献   

18.
19.
There was no well-resolved mechanism of audible noise caused by corona discharge on UHV transmission lines. Hence we measured the sound pressure of pulsed discharges between needle-plane electrodes under different discharge conditions in air, for revealing the intrinsic relationship between discharge and its audible noise(AN). The relationship between discharge parameters and audio characte- ristics was drawn from the analysis of the electric and sound signals obtained in experiments. Experiment results showed that nanosecond pulsed discharges produce the sound pressure with a microsecond pulse lagging behind the discharge pulse in their waveforms. The peak value of the sound pulse decreases and its high frequency component gradually attenuates, when the measuring distance from discharges increases. The sound pulses correlate with the discharge current and voltage significantly, especially the current. The audible noise produced by repetitive pulsed discharge increases with the strength, duration, and pulse repetition rate of discharge.  相似文献   

20.
The influence mechanism of a small amount of SF6 on ozone generation in oxygen or air discharge is investigated.Some results are obtained by probing into the number of the high-energy electrons,which have the sufficiency energy for generating ozone.Introducing a small amount of SF6 into oxygen sharply decreases the number of high-energy electrons,because the electron density decreases sharply while the mean electron energy remains constant due to higher breakdown voltage and lower discharge power,and some high-energy electrons are consumed by the excitation and attachment of SF6.In contrast,when a small amount of SF6 is added into dry air discharge,despite the consumption of the excitation and attachment of SF6,the number of high energy electrons increases sharply,which is attributed to the higher mean electron energy and electron density resulted from higher breakdown voltage and discharge power.When the volume fraction of SF6 increases from 0 to 2.22%,the ozone mass concentration and the ozone yield increase by 45.7% and 29.7%,respectively.Therefore,though the oxygen source should avoid the presence of SF6,adding a small amount of SF6 can improve the ozone mass concentration and the efficiency of ozone generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号