首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
为了优化单相全桥逆变器的直流链路上的电流纹波,设计了一种增强型的单相全桥逆变器及其控制策略,可有效降低直流链路电流纹波,并同时在交流输出端提供了优质的正弦电能。加强型全桥逆变器增设了一对额外的开关,通过设计互补控制方案,可防止双倍频纹波电流流入逆变器的输入端,直流输入侧仅需提供输出功率的直流分量。最后,试验结果验证了所设计的增强型单相全桥逆变器的效果。  相似文献   

2.
随着TDD移动通信技术的广泛应用,TDD移动通信设备对通信电源的要求也越来越高。由于TDD设备的负载在持续不断的跳变,TDD通信电源的输入纹波电流会变得很大,这将会加大通信电源输入电解电容的容量,增加整个电源的体积,并使得输入电解电容的温升加大,降低电解电容的寿命,从而降低整个电源的可靠性。提出一种双级拓扑结构,该拓扑前级采用升压电路将输入电压抬升到一个较高的母线电压,后级采用全桥变换器,将母线电压转化为所需的输出电压。前级采用电压外环电流内环的双环控制方法,控制电源的输入电流,使输入电流跟踪输入电压,从而减小了输入电流的纹波。后级采用开环的控制方法,固定全桥变换器的占空比,将较高的母线电压经过隔离变压器转换之后降为所需的输出电压。该拓扑结构具有输入纹波电流小,电源功率密度大、可靠性高的特点。  相似文献   

3.
两级式单相逆变器输入电流低频纹波分析及抑制   总被引:4,自引:0,他引:4  
50Hz单相逆变器时变特性导致前级直直变换器输入电流中含两倍频100 Hz低频纹波,将有可能诱发变换器之间相互作用问题,如稳定性问题、输入纹波电流限制等。基于反向电流增益Ai(s)(输入电流对输出电流)模型,提出一种新的方法,用于分析直直变换器低频纹波特性。建立不同控制方式下的Ai(s)模型,并通过SABER软件仿真得到验证。指出并验证平均电流控制方式相比电压控制方式及开环控方式,在输入电流低频纹波抑制方面更有效,并基于Ai(s)模型给出相关的设计准则。最终给出不同控制策略下输入电流低频纹波仿真及实验作为验证。  相似文献   

4.
两级式逆变器输入低频纹波电流抑制   总被引:1,自引:0,他引:1  
两级式逆变器的前级DC/DC变换器输入电流含两倍交流输出频率交流分量,该纹波电流会缩短分布式发电系统中蓄电池、燃料电池等的使用寿命.这里基于电流反向增益交流小信号传递函数,分析了不同控制方式下推挽正激DC/DC变换器输入纹波电流幅值,研究了平均电流控制方式下参数设计方法,采用提出的设计方法,可将输入电流低频纹波减小至5...  相似文献   

5.
单相逆变器输入侧往往存在低频脉动电流,需要利用很大的电解电容进行滤波,为了取得更好的滤波效果并减小滤波电路参数,有必要采用功率解耦技术解决低频纹波抑制问题。目前文献报道的单相逆变器低频纹波抑制方法大致分为5种情况:DC级功率解耦、两级式功率解耦、AC级功率解耦、三端口功率解耦和无电解电容功率解耦。本文从电路拓扑、电路参数、解耦效果和控制策略几个方面展开介绍,并对以上几种技术进行了比较和评估,总结各功率解耦技术的优缺点及适用范围。  相似文献   

6.
根据燃料电池并网发电系统要求低输入电流纹波和升压的要求,提出一种可抑制输入低频电流纹波的单级、升压式并网逆变器,并给出了一个工频周期内的信号调制示意图.所提逆变器中,将单相桥式逆变器的一个桥臂与Boost变换器所共用,且设计Boost变换器电流工作在电流断续模式,可有效抑制电源输出的低频电流纹波.分析了所提并网逆变器在电网电压极性不同情况下的工作模态.推导了输入电流纹波含量和共用开关管电流的标幺值,给出了升压电感的设计规则.实验结果表明,所提逆变器性能优良.  相似文献   

7.
电流源型逆变器(CSI)电机驱动系统通常使用电压源串联电感来实现恒定的直流链电流,然而因这种方式未对直流链电流进行控制,直流链电流会出现断续或持续增加的问题。为此,采用DC-DC变换器电路设计PI控制器,可以实现对直流链电流的控制。同时,详细分析一个周期内DC-DC变换器与CSI的电压变化规律,通过优化CSI的电流矢量序列,使得直流链电流纹波得到抑制,提高了输出端电机的电流波形质量。实验结果验证了所提出的直流链电流控制方法的可行性与有效性。  相似文献   

8.
为了实现单相全桥电压型逆变器对正弦指令的无静差跟踪,提出一种非线性控制策略。基于逆变器的工作原理分析了其大信号模型。从系统的控制目标出发,根据系统稳态的特点定义了中间变量的参考值,进而将负载电流前馈到控制量中,得到了一种非线性控制模型。为了减少非线性控制模型中参数选择的盲目性,利用微分方程特征根的分布,并结合工程上衰减周期的选取原则,得到了系统控制参数合理的取值范围。最后通过试验验证了该控制策略的可行性和参数选择的有效性。  相似文献   

9.
单相有源电力滤波器输出谐波补偿电流时,存在直流电压波动大、直流支撑电容器纹波电流大的特点,影响了电容器以及滤波器的使用寿命。本文根据有源滤波器的等值电路和交直流侧电压电流变换原理,建立了直流电压波动分量和电容器纹波电流与谐波补偿电流之间的解析关系式,揭示了滤波器补偿电流对直流电压波动和纹波电流的影响规律,仿真和实验结果验证了理论分析的正确性,最后给出了直流支撑电容器的选择建议。  相似文献   

10.
全桥双向电流高频链逆变器   总被引:19,自引:7,他引:12  
提出了一种新颖的全桥双向电流源高频链逆变器的拓扑结构,并详细阐述了工作原理、控制方案和设计方法。250VA/50Hz输出、50kHz开关频率的实验结果表明该逆变器具有以下优点:双向功率传输、拓扑结构简单、使用器件少、控制方案简单、效率高、可靠性高以及良好的动态响应。  相似文献   

11.
合理的低频电流纹波水平能有效增加微逆变器的寿命,提高光伏电池的输出功率。文中提出一种器件复用的电流型桥式变换器,作为两级式光伏微逆变器的前级,针对该变换器提出了一种双占空比调制策略,分析了在该策略下变换器的工作原理,在此基础上提出了一种可实现光伏电池侧低频电流纹波抑制的策略。分析了变换器的小信号模型,分别设计了升压电感电流内环、光伏电池电压外环以及低压侧电压环的调节器参数,并通过根轨迹验证了在整个光伏电池运行范围内变换器均能稳定运行。实验样机运行结果验证了分析与设计参数的正确性。  相似文献   

12.
Single-phase inverters employ LC filters for the purpose of reducing pulse-width modulation harmonics. The drawback of LC filter is its stability problem at resonance frequency. Passive damping offers simple and reliable solution, but it decreases the overall system efficiency. Active damping is lossless and provides flexibility of controlling the damping performance; however, it is sensitive to parameters variation. This article presents stability analysis of a single-phase full-bridge inverter to improve dynamic performance and stability. Design of LC filter is carried out considering both undamped and damped structures. The effect of filter parameters on pole-zero locations of the inverter is presented, and variation of the phase margin over a wide range of parameters variation is examined. Active damping using closed-loop current control of the full-bridge inverter to mitigate the resonance oscillation is designed and compared with passive damping. The disturbance rejection via dynamic stiffness with and without active damping is examined to justify the proposed current controller. Simulation and experimental results are presented to validate the effectiveness of the proposed design. It is found that the proposed control of the inverter provides excellent voltage regulation with low total harmonic distortion and ensures good performance and robust stability under parameters variation.  相似文献   

13.
许胜 《低压电器》2013,(10):34-37,43
针对并网逆变器输出电流定时滞环跟踪控制过程中电流纹波较大现象,提出了一种三电平定时滞环电流控制纹波抑制技术。分析了在常规定时滞环电流控制方法下较大电流跟踪误差δ的形成原因,就电流变化率dis/dt对δ的影响展开了论述。提出了通过在电网电势指定区间内增加逆变器交流侧输出电压零电平的方法,降低dis/dt,以减小δ,抑制电流纹波。试验结果表明,该技术可使逆变器输出δ变小,电流畸变程度变轻,能有效降低逆变器功率器件的开关损耗。  相似文献   

14.
为了减小输出电流的纹波,在传统的全桥移相零电压零电流(ZVZCS)-PWM变换器的基础上设计了一种优化的变换器。通过在次级引入一个辅助电路,既能使超前臂实现ZVS,滞后臂实现ZCS,又能减小输出电流纹波。辅助电路中无损耗元件和有源开关,能克服传统变换器的缺点。该电路具有高效率,低损耗,小电流纹波和能带大功率负载的优点。根据电路特征和设计要求,选择采用2.5 kW,100 kHz的IGBT作为基本元件研制了一台实验样机,并验证了该理论的正确性。  相似文献   

15.
针对低压直流输入/中频400 Hz/115 V交流输出的高功率密度航空变流器的应用需求,提出了两级电路拓扑结构,其前级采用并-串型移相全桥结构实现隔离和升压的功能,后级采用全桥电路实现逆变功能。同时,为减小单相逆变器直流侧的二次纹波电流对前级的影响,前级单模块采用加入陷波器的负载电流前馈控制策略。为了进一步提高前级并-串型DC-DC变换器的动态性能,还提出了一种主从控制的均压控制策略;为了提高后级逆变电路的动态性能和负载调整率,提出一种改进的前馈控制策略。仿真和实验均验证了上述两级结构逆变电源控制策略的可行性。  相似文献   

16.
一种交错并联型三电平双降压式全桥光伏并网逆变器   总被引:3,自引:0,他引:3  
提出一种新颖的交错并联型三电平双降压式全桥光伏并网逆变器。保留了三电平双降压式全桥逆变器转换效率高、开关损耗低等优点,交错并联技术的引入,不仅使得逆变器输出电流纹波在不提高功率管开关频率的情况下进一步减小且频率增加一倍,从而减小了并网电流的总谐波失真,而且提高了系统的功率密度,降低了功率器件的电应力和热应力。提出交错并联的两路逆变共用两个工频开关管,弱化了控制的复杂性,提高了系统的稳定性和可靠性,且使得系统更易扩展。详细分析逆变器的工作原理,设计试制一台2 kW原理样机,实验结果验证了原理的正确性及系统的性能优势。  相似文献   

17.
双降压式全桥逆变器   总被引:1,自引:0,他引:1  
为避免桥臂功率管直通问题和提高输入直流电压利用率,在全桥逆变器和双降压式半桥逆变器的基础上,提出了双降压式全桥逆变器(dual buck full-bridge inverter,DBFBI),该逆变器具有无桥臂直通、输入直流电压利用率高、效率高、续流二极管可优化选取等优点。半周期调制方式减小了功率管的开关损耗及导通损耗,分析了半周期调制方式下电路的工作模态,给出了电感电流连续与断续时输入输出电压关系。设计了采用滞环电流控制的双降压式全桥逆变器系统,通过控制逻辑设计使之实现了半周期运行模式。仿真和实验结果证明该逆变器具有高质量的输出电压波形和良好的动态响应特性。  相似文献   

18.
三相两电平逆变器广泛应用于交流电机驱动、电能变换等领域。由于逆变器的输出电流含有纹波成分,会给系统带来损耗增加、性能下降等问题。在脉冲位置居中对称的前提下推导了电流纹波模型,分析了脉冲宽度调制PWM(pulse width modulation)技术中开关周期、脉冲占空比和脉冲位置对电流纹波的影响,并提出了一种改变脉冲占空比抑制电流纹波的PWM方法,即变零矢量分配脉冲宽度调制VZDPWM(variable zero-vector distribution pulse width modulation)技术。最后,通过仿真和实验验证了VZDPWM抑制电流纹波的有效性。  相似文献   

19.
随着单块光伏电池输出功率越来越高,以反激电路为基础的传统光伏微逆变器(PM)难以达到高效率,因此以桥式电路为基础的PM越来越受到重视。文中提出一种较小容值的桥式PM及其基于功率预测的输入侧低频电流纹波抑制方法。该方法取消了传统的电流内环,而且保证变换器的输出功率能够在一个开关周期时间内实现快速跟踪。考虑到实际参数与检测值的误差,所提功率预测方法仍具有很好的稳定性与鲁棒性。通过建立系统的小信号模型,设计了电压外环的调节器参数,使得电压环具有较大的带宽。实验结果证明了所提PM性能优良。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号