首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
超级电容器与蓄电池混合使用,可以充分发挥蓄电池能量密度大和超级电容器功率密度大、循环寿命长的优点,大大提升储能系统的性能.针对独立光伏系统的特点,设计了一种有源式混合储能方案,建立了系统的模型和控制环节.实验结果表明,在光伏发电功率和负载功率脉动时,蓄电池能够工作在优化的充放电状态,并能够有效地减少充放电小循环次数.对解决光伏等可再生能源系统中的储能问题,具有现实可行性.  相似文献   

2.
对于独立光伏发电系统,通常需要储能系统来保证供电的稳定性和持续性。为了吸收光伏电池发出的脉动功率,从而抑制直流母线的电压波动,并满足向负载提供短时大功率的需求。提出了采用超级电容器和蓄电池混合储能方案,并进行了充放电仿真分析,验证了超级电容的蓄电池充放电特点,提出了充放电控制策略。  相似文献   

3.
张芳  张红娟  高妍  杨磊  靳宝全 《电气传动》2021,51(13):52-56,63
针对混合储能系统(HESS)中负载多变性和冲击性导致的系统不稳定,充放电效率下降,控制难度增加等问题,提出了一种蓄电池/超级电容器混合储能系统的动态比例功率分配控制策略.控制采用双层结构,外层功率控制回路用于确定蓄电池与超级电容器的功率分配比;内层电流控制回路用于确定蓄电池和超级电容器的最佳充放电状态以及实时跟踪负载需求.当外层功率控制回路中的负载不变时,超级电容器和蓄电池的功率分配比维持不变.负载改变时,功率分配比动态改变,超级电容器提供最大的动态负载电流,蓄电池则以不变的动力继续工作.通过仿真测试表明,动态比例功率分配不仅能够减小蓄电池电量波动及其变化率,而且能够提高系统充放电效率和稳定性.  相似文献   

4.
混合储能的独立光伏系统充电控制研究   总被引:1,自引:0,他引:1  
超级电容的功率密度大,循环寿命长,很适合与能量密度大的蓄电池相结合,共同组成独立式光伏发电系统的储能部分。在此分析比较了两种储能器件的各项参数,针对光伏发电系统的特点,提出了一种应用于蓄电池与超级电容混合储能系统的充电控制方案。通过监视系统供电状态,减少蓄电池不必要的接入,达到延长蓄电池循环寿命的目的。实验结果表明,蓄电池与超级电容混合储能明显提高了系统的瞬时功率输出,降低了蓄电池的电流脉动,并减少其充放电循环次数,有效延长了蓄电池的使用寿命。  相似文献   

5.
一种适用于微电网混合储能系统的功率分配策略   总被引:1,自引:0,他引:1  
混合储能系统同时具有功率型和能量型储能设备的优点,适用于微电网中平抑波动性功率。采用直流母线并联方式的超级电容器和蓄电池混合储能系统,由蓄电池储能单元稳定直流母线电压,超级电容器储能单元跟踪参考电流,从而达到功率的动态分配。在混合储能系统功率损耗模型的基础上,提出一种兼顾超级电容器荷电状态和储能系统损耗的功率分配策略。将该策略用于光伏发电系统输出功率平抑,仿真结果验证了所提控制策略的有效性。  相似文献   

6.
平抑间歇式电源功率波动的混合储能系统设计   总被引:2,自引:0,他引:2  
混合储能综合了功率型储能器件和能量型储能器件的优势,弥补了单一储能技术的不足,是储能技术的重要发展方向之一。针对平抑间歇式电源发电功率波动的应用需求,研究了超级电容器/蓄电池混合储能系统。结合间歇式电源的运行和控制,首先分析了超级电容器/蓄电池混合储能系统的作用,然后针对超级电容器、蓄电池的输出特性和应用需求,进行了混合储能功率电路的设计,并以蓄电池储能量和超级电容器储能量为核心进行了混合储能系统能量管理方案的设计,所设计的能量管理方案具有中央管理单元控制和本地控制2个层次,具有自适应特征。仿真和实验证实了上述方法的有效性。  相似文献   

7.
针对风光互补发电系统并网功率波动问题,在考虑平抑功率波动对储能性能需求的基础上,将蓄电池和超级电容器组成复合储能系统(hybrid energy storage system,HESS)应用到风光互补微电网中,并提出了复合储能的能量管理和控制策略。能量管理方面,遵循超级电容器优先工作原则,通过判断超级电容器端电压大小来决定复合储能的工作方式;超级电容器用来平抑风光发电并网波动功率的高频部分,蓄电池平抑低频部分,进而减少蓄电池的充放电次数,延长其使用寿命;控制策略方面,蓄电池的双向DC/DC变换器采用恒功率控制,超级电容器的双向DC/DC变换器采用恒母线电压控制,保证了直流母线电压的稳定,实现了复合储能的双向充放电控制。最后,利用PSCAD软件搭建了含复合储能的风光互补微电网仿真模型,仿真结果验证了所提控制策略的有效性和正确性。  相似文献   

8.
针对小型风力发电系统中风速和负载突变引起的功率波动,采用蓄电池和超级电容器组成混合储能系统进行平抑,为充分利用蓄电池和超级电容器所具有的互补性能,研究了能量管理控制策略。根据风速及负载的变化和超级电容器的荷电状态,控制混合储能装置的工作模式,使风力发电机、蓄电池和超级电容器3个能量源协调工作。为验证能量管理策略的有效性,用Matlab/Simulink进行仿真研究。仿真结果表明:风力发电机输出功率波动且负载突变时,采用混合储能能够减小功率波动对系统的冲击,使蓄电池工作在优化的充放电状态,有助于延长蓄电池使用寿命,加快储能装置响应速度,提高系统能量利用效率。  相似文献   

9.
储能系统对平抑光伏功率波动具有重要的作用。采用蓄电池与超级电容器混合储能,并根据蓄电池与超级电容器性能特点的不同,提出了基于低通滤波的混合储能协调控制方案及平抑光伏功率波动的控制策略。为防止蓄电池过度充放电,提出了SOC反馈调节蓄电池充放电滤波参数的方案,在保证混合储能能够平抑光伏功率的同时,延长蓄电池的使用寿命。实验表明,当光伏功率增加或突降时,混合储能可及时调整输出功率,补偿光伏功率缺额;当蓄电池SOC过高时,蓄电池可减少出力,防止蓄电池过充。实验验证了所提策略的可行性。  相似文献   

10.
《高压电器》2015,(6):68-73
高压绝缘子参数监测系统主要实现对高压绝缘子状态的在线监测,其供电电源是关键问题之一,要求电源长期免维护﹑高可靠性与稳定性。文中采用由蓄电池与超级电容器混合储能的光伏发电电源,根据负载及储能系统的特点提出了能量管理策略,光伏发电电源采用单向DC/DC单向变换器进行最大功率控制,超级电容与蓄电池采用双向DC/DC变换器与系统进行能量的双向交换。结果表明,该控制策略能在光伏电池输出功率波动的情况下,直流母线电压保持稳定,且能有效减少蓄电池的充放电循环次数,优化充放电性能,延长使用寿命,最大程度地保证光伏发电电源向系统不间断供电。  相似文献   

11.
针对独立光伏发电系统中混合储能方式能够同时具有高功率密度和高能量密度的特性,提出一种微电网混合储能功率分频控制策略来提高系统运行的稳定性。通过Simulink平台搭建了独立光伏发电混合储能系统,通过对功率分频实现了超级电容器和锂离子电池的功率输出优化分配,抑制了由于负荷突变引起的功率波动,维持了直流母线电压的稳定。仿真结果表明,该方法提高了系统的稳定性,实现了对直流负载的可靠供电。  相似文献   

12.
混合储能在风光互补微网中的控制策略   总被引:8,自引:1,他引:7       下载免费PDF全文
在风光互补发电系统组成的微网中,储能技术的应用占有重要地位,它可以进一步完善风光互补发电技术,使系统中各个部分的控制更加合理、有效,使系统更加稳定、安全,并且提高了整体使用寿命与经济性。构建了一种应用于风光互补微网中的超级电容器蓄电池混合储能系统,提出了基于功率外环加电流内环控制的VSC控制策略以及基于滑动平均滤波器的DC/DC控制策略。利用Matlab构建模拟微网并进行仿真,其验证结果表明基于上述策略的混合储能系统在微网中的应用是合理有效的,同时超级电容的高功率密度及蓄电池的高能量密度的特点的结合提高了混合储能系统的灵活性与实用性。  相似文献   

13.
针对直流微电网中光伏发电单元出力的波动性和间歇性造成系统内部功率不平衡的问题,混合储能系统可以同时发挥蓄电池高能量密度和超级电容高功率密度的优势,根据直流母线电压进行混合储能单元间的协调控制策略。该策略将直流母线电压进行分层控制,采用四个电压阈值共分成五个控制区域,以直流母线电压为信息载体,决定储能系统的运行状态,实现对混合储能单元的充电、放电模式间自主切换。电压分层控制有效地避免了蓄电池由于电压波动而频繁进行充放电切换,从而延长了电池的使用寿命。最后,MATLAB/Simulink的仿真结果验证了所提控制策略的可行性。  相似文献   

14.
系统分析了混合动力汽车用蓄电池的不足以及应用超级电容器的优势,研究了超级电容器与蓄电池构成复合电源的3种不同组成方式,指出将高功率密度的超级电容器与高能量密度的蓄电池通过功率DC/DC变换器匹配,使之既可以输出,吸收高倍率电流的冲击,又可以满足多次高倍率电流所需的高能量密度.实验与仿真结果表明,双向DC/DC变换器的并联结构具有较好的效果和实用性.  相似文献   

15.
桂长清 《电池工业》2005,10(4):231-235
由于利用了热机比能量高和蓄电池比功率高的特点,以及可回收一部分动能,混合电力推进系统提高了推进系统的总效率,降低了环境的污染。当选用蓄电池作为贮能装置时,应当根据推进系统的组合方式和设计要求,综合考虑蓄电池的性能和价格。目前,密封铅蓄电池仍然是混合电力系统的首选电源。  相似文献   

16.
针对由启动电池和动力电池构成的电动汽车储能系统,利用启动电池功率密度高的特点与动力电池组结合构成混合储能系统作为负载的供电单元,为避免动力电池组长时间大电流放电和延长动力电池组寿命,设计改进型逻辑门限混合储能控制策略,改善混合储能系统内部能量均衡,并能有效提高储能系统电池使用效率。仿真比较了常规逻辑门限控制策略和改进型逻辑门限控制策略的差异,并进一步通过实验验证改进型逻辑门限控制策略的可行性。结果表明,改进型逻辑门限控制策略能够更好地改善动力电池组输出电流大的问题,并很好地实现了动力电池组和启动电池组的能量均衡。  相似文献   

17.
微电网中的微电源和负载具有波动性和随机性,故储能系统是维持微电网安全可靠运行并改善电能质量的关键,蓄电池与超级电容器混合使用可以发挥蓄电池电池能量密度大和超级电容器功率密度大,充放电速度快的优势,提高微电网储能系统性能。提出了一种基于互补PWM小信号模型,并分别给蓄电池和超级电容器设计了控制方案,蓄电池采用单电流环很好的平抑了功率的低频波动,超级电容器采用带前馈的双环控制,平抑功率的高频波动,并有效的维持了直流母线电压的稳定。仿真结果证明了所提出的控制策略的正确性。  相似文献   

18.
微电网孤岛运行混合储能自适应控制策略   总被引:1,自引:0,他引:1  
蓄电池/超级电容器混合储能系统综合了超级电容器高功率密度和蓄电池高能量密度的优势,是储能技术未来发展方向之一。针对平抑微电网直流母线电压波动的应用需求,研究了蓄电池/超级电容器混合储能系统,建立了微电网孤岛运行状态混合储能系统等效电路模型。为充分保证混合储能系统整体性能,提出一种主从双环结构自适应控制策略,系统依据所设置的不同开环截止频率,对母线功率波动进行自适应响应,完成上层的功率自适应调节并使之平衡。针对负载电流不易测量的问题,提出基于扩张状态观测器的方法对其进行虚拟测量。仿真分析结果验证了所提控制策略的有效性与可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号