首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 768 毫秒

1.  融合残差和对抗网络的跨模态PET图像合成方法  
   肖晨晨  陈乐庚  王书强《计算机工程与应用》,2022年第58卷第1期
   针对现有跨模态图像合成方法不能很好地捕获人体组织的空间信息与结构信息,合成的图像具有边缘模糊、信噪比低等问题,提出一种融合残差模块和生成对抗网络的跨模态PET图像合成方法。该算法在生成器网络中引入改进的残差初始模块和注意力机制,减少参数量的同时增强了生成器的特征学习能力。判别器采用多尺度判别器,以提升判别性能。损失函数中引入多层级结构相似损失,以更好地保留图像的对比度信息。该算法在ADNI数据集上与主流算法进行对比,实验结果表明,合成PET图像的MAE指标有所下降,SSIM与PSNR指标有所提升。实验结果显示,提出的模型能很好地保留图像的结构信息,在视觉和客观指标上都能提高合成图像的质量。    

2.  Mask-2-Human:基于生成式对抗网络的人物图像生成方法  
   《Planning》,2019年第3期
   针对较为复杂的人物图像生成任务,提出了一种从mask图像生成人物图像的新方法。基于生成式对抗网络(generative adversarial nets,GANs),接收一个多通道的mask图像作为输入,其中的每个通道表示人物某个区域(如头发、脸部、手臂等)的掩码。该网络由生成器和判别器组成,生成器在U-Net结构基础上加入了残差模块,判别器用于判别生成图像的真伪性。通过施加不同的高斯噪声,所提方法能根据相同的mask生成具有不同外观的人物图像,具有更好的结果多样性。    

3.  基于条件生成对抗网络的舌体图像分割  
   刘明  王亚刚《计算机与数字工程》,2021年第49卷第6期
   在舌体图像分割过程中容易出现边缘细节的丢失,适用性差,算法运行速度慢等问题.论文针对上述问题提出一种改进的基于条件生成对抗网络的分割方法.首先,在生成器网络中使用可分离的卷积结构代替传统卷积结构.其次,为了提高分割效果,在生成器网络中加入残差结构增强网络对图像细节的获取能力.最后,使用形态学相关算法对分割后的舌体图像进一步处理优化.实验表明,相对于原始的条件生成对抗网络分割模型,论文所提算法的P值提升1.03%,R值提升1.51%,F值提升1.36%,并且耗时更短,分割效果显著优于传统分割方法,这为后续舌像的分析与诊断奠定基础.    

4.  基于条件深度卷积生成对抗网络的视网膜血管分割  
   蒋芸  谭宁《自动化学报》,2021年第1期
   视网膜血管的分割帮助医生对眼底疾病进行诊断有着重要的意义.但现有方法对视网膜血管的分割存在着各种问题,例如对血管分割不足,抗噪声干扰能力弱,对病灶敏感等.针对现有血管分割方法的缺陷,本文提出使用条件深度卷积生成对抗网络的方法对视网膜血管进行分割.我们主要对生成器的网络结构进行了改进,在卷积层引入残差模块进行差值学习使得网络结构对输出的改变变得敏感,从而更好地对生成器的权重进行调整.为了降低参数数目和计算,在使用大卷积核之前使用小卷积核对输入特征图的通道数进行减半处理.通过使用U型网络的思想将卷积层的输出与反卷积层的输出进行连接从而避免低级信息共享.通过在DRIVE和STARE数据集上对本文的方法进行了验证,其分割准确率分别为96.08%、97.71%,灵敏性分别达到了82.74%、85.34%,F度量分别达到了82.08%和85.02%,灵敏度比R2U-Net的灵敏度分别高了4.82%,2.4%.    

5.  基于深度学习的图像显著对象检测  
   刘春晖  周洋  刘晓琪  唐向宏《光电子.激光》,2019年第1期
   显著区域检测可应用在对象识别、图像分割、视 频/图像压缩中,是计算机视觉领域的重要研究主题。然而,基于不 同视觉显著特征的显著区域检测法常常不能准确地探测出显著对象且计算费时。近来,卷积 神经网络模型在图像分析和处理 领域取得了极大成功。为提高图像显著区域检测性能,本文提出了一种基于监督式生成对抗 网络的图像显著性检测方法。它 利用深度卷积神经网络构建监督式生成对抗网络,经生成器网络与鉴别器网络的不断相互对 抗训练,使卷积网络准确学习到 图像显著区域的特征,进而使生成器输出精确的显著对象分布图。同时,本文将网络自身误 差和生成器输出与真值图间的 L1距离相结合,来定义监督式生成对抗网络的损失函数,提升了显著区域检测精度。在MSRA 10K与ECSSD数据库上的实 验结果表明,本文方法 分别获得了94.19%与96.24%的准确率和93.99%与90.13%的召回率,F -Measure值也高达94.15%与94.76%,优于先 前常用的显著性检测模型。    

6.  基于生成对抗网络的CFA图像去马赛克算法  
   罗静蕊  王婕  岳广德《计算机工程》,2021年第47卷第7期
   在单传感器数码相机图像采集系统的彩色滤波阵列中,每个像素仅捕获单一颜色分量,并且在彩色图像重构过程中图像边缘等高频区域的伪影现象尤为明显.提出一种基于生成对抗网络的图像去马赛克算法,通过设计生成对抗网络的生成器、鉴别器和网络损失函数增强学习图像高频信息的能力,其中使用的生成器为具有残差稠密块和远程跳跃连接的深层残差稠密网络,鉴别器由一系列堆叠的卷积单元构成,并且结合对抗性损失、像素损失以及特征感知损失改进网络损失函数,提升网络整体性能.数值实验结果表明,与传统去马赛克算法相比,该算法能更有效减少图像边缘的伪影现象并恢复图像高频信息,生成逼真的重建图像.    

7.  一种生成对抗网络用于图像修复的方法  被引次数:1
   罗会兰  敖阳  袁璞《电子学报》,2000年第48卷第10期
   近年来基于深度学习的图像修复方法相比于传统方法,表现出明显优势,前者能更好的生成视觉上合理的图像结构和纹理.但现有的标准卷积神经网络方法,通常会造成颜色差异过大和图像纹理缺失与失真的问题.本文提出了一种新型图像修复深度网络模型,该模型由两个相互独立的生成对抗式网络模块组成.其中,图像修复网络模块旨在解决图像缺失区域的修复问题,其生成器基于部分卷积网络;图像优化网络模块旨在解决修复后图像存在局部色差的问题,其生成器基于深度残差网络.通过两个网络模块的协同作用,图像的视觉效果与图像质量得到提高.与其他先进方法进行定性和定量比较的实验结果表明,本文提出的方法在图像修复质量上表现更好.    

8.  属性一致的物体轮廓划分模型  
   孙劲光  李桃  董祥军《电子与信息学报》,2022年第43卷第10期
   该文提出一种基于全卷积深度残差网络、结合生成式对抗网络思想的基于属性一致的物体轮廓划分模型.采用物体轮廓划分网络作为生成器进行物体轮廓划分;该网络运用结构相似性作为区域划分的重构损失,从视觉系统的角度监督指导模型学习;使用全局和局部上下文判别网络作为双路判别器,对区域划分结果进行真伪判别的同时,结合对抗式损失提出一种联合损失用于监督模型的训练,使区域划分内容真实、自然且具有属性一致性.通过实例验证了该方法的实时性、有效性.    

9.  一种改进深度卷积生成对抗网络的人脸分割方法  
   刘柏森  邓琛  张雾琳《黑龙江工程学院学报》,2019年第5期
   在智能算法领域,人脸识别是一个重要的算法部分,而人脸分割又是人脸识别的一个重要组成部分。提出一种基于改进的深度卷积生成式对抗网络的人脸分割方法,将端到端的图像变换模式应用于生成器中,利用生成器对人脸图像进行分割。深度卷积生成式对抗网络将卷积层加入到生成器和判别器,使得生成器通过反卷积产生图像,而文中在反卷积之前再加入卷积层,组合形成全卷积的网络结构,将生成器的图像生成功能扩展成为语义分割功能。同时,生成器的输入原图和输出标签的通道组合作为判别器的判别对象,通过判别器来评判分割水平,进一步提高分割的标签与输入原图的关联性。经过多次实验,验证此方法能有效分割人脸主要区域。    

10.  语义区域风格约束下的图像合成  
   胡妤婕  常建慧  张健《计算机科学》,2021年第48卷第2期
   生成对抗网络近年来发展迅速,其中语义区域分割与生成模型的结合为图像生成技术研究提供了新方向。在当前的研究中,语义信息作为指导生成的条件,可以通过编辑和控制输入的语义分割掩码来生成理想的特定风格图像。文中提出了一种具有语义区域风格约束的图像生成框架,利用条件对抗生成网络实现了图像分区域的自适应风格控制。具体而言,首先获得图像的语义分割图,并使用风格编码器提取出图像中不同语义区域的风格信息;然后,在生成端将风格信息和语义掩码对应生成器中的每个残差块分别仿射变换为两组调制参数;最后,输入到生成器中的语义特征图根据每个残差块的调制参数加权求和,并通过卷积与上采样渐进式地生成目标风格内容,从而有效地将语义信息和风格信息相结合,得到最终的目标风格内容。针对现有模型难以精准控制各语义区域风格的问题,文中设计了新的风格约束损失,在语义层次上约束区域风格变化,减小不同语义区域的风格编码之间的相互影响;另外,在不影响性能的前提下,采取权重量化的方式,将生成器的参数存储规模压缩为原来的15.6%,有效降低了模型的存储空间消耗。实验结果表明,所提模型的生成质量在主观感受和客观指标上较现有方法均有显著提高,其中FID分数比当前最优模型提升了约3.8%。    

11.  并行生成网络的红外—可见光图像转换  
   余佩伦  施佺  王晗《中国图象图形学报》,2021年第26卷第10期
   目的 针对现有图像转换方法的深度学习模型中生成式网络(generator network)结构单一化问题,改进了条件生成式对抗网络(conditional generative adversarial network,CGAN)的结构,提出了一种融合残差网络(ResNet)和稠密网络(DenseNet)两种不同结构的并行生成器网络模型。方法 构建残差、稠密生成器分支网络模型,输入红外图像,分别经过残差、稠密生成器分支网络各自生成可见光转换图像,并提出一种基于图像分割的线性插值算法,将各生成器分支网络的转换图像进行融合,获取最终的可见光转换图像;为防止小样本条件下的训练过程中出现过拟合,在判别器网络结构中插入dropout层;设计最优阈值分割目标函数,在并行生成器网络训练过程中获取最优融合参数。结果 在公共红外-可见光数据集上测试,相较于现有图像转换深度学习模型Pix2Pix和CycleGAN等,本文方法在性能指标均方误差(mean square error,MSE)和结构相似性(structural similarity index,SSIM)上均取得显著提高。结论 并行生成器网络模型有效融合了各分支网络结构的优点,图像转换结果更加准确真实。    

12.  基于GAN–UNet的矿石图像分割方法  
   李鸿翔  王晓丽  阳春华  熊伟《控制理论与应用》,2021年第38卷第9期
   在选矿生产过程中,磨机给矿粒度对磨矿分级效率影响重大,是一个关键的控制参数.由于矿石表面不规则、棱线较多,同时存在矿石间堆叠的问题,给基于图像的矿石粒度检测带来极大困难.本文提出一种基于GAN–UNet的矿石图像分割方法,针对矿石图像棱线易引起矿石边缘错误识别的问题,采用生成对抗网络进行图像分割,将U–Net作为图像分割生成器网络,使用人工标记的矿石边缘图像作为真实图像,随后构建判别器网络以判断图像来源,同时将判别器误差与生成器误差通过加权形式引入网络训练中,直到判别器难以判断分割图像来源,获得满足条件的生成器.对实际工业生产矿石图像的分割结果表明,本方法与U–Net网络相比提升了网络对矿石边缘的识别能力,减小了图像分割误差,对矿石区域的相对误差平均值降至8.20%.    

13.  融合感知损失的生成式对抗超分辨率算法  
   杨娟  李文静  汪荣贵  薛丽霞《中国图象图形学报》,2019年第24卷第8期
   目的 现有的基于深度学习的单帧图像超分辨率重建算法大多采用均方误差损失作为目标优化函数,以期获得较高的图像评价指标,然而重建出的图像高频信息丢失严重、纹理边缘模糊,难以满足主观视觉感受的需求。同时,现有的深度模型往往通过加深网络的方式来获得更好的重建效果,导致梯度消失问题的产生,训练难度增加。为了解决上述问题,本文提出融合感知损失的超分辨率重建算法,通过构建以生成对抗网络为主体框架的残差网络模型,提高了对低分率图像的特征重构能力,高度还原图像缺失的高频语义信息。方法 本文算法模型包含生成器子网络和判别器子网络两个模块。生成器模块主要由包含稠密残差块的特征金字塔构成,每个稠密残差块的卷积层滤波器大小均为3×3。通过递进式提取图像不同尺度的高频特征完成生成器模块的重建任务。判别器模块通过在多层前馈神经网络中引入微步幅卷积和全局平均池化,有效地学习到生成器重建图像的数据分布规律,进而判断生成图像的真实性,并将判别结果反馈给生成器。最后,算法对融合了感知损失的目标函数进行优化,完成网络参数的更新。结果 本文利用峰值信噪比(PSNR)和结构相似度(SSIM)两个指标作为客观评价标准,在Set5和Set14数据集上测得4倍重建后的峰值信噪比分别为31.72 dB和28.34 dB,结构相似度分别为0.892 4和0.785 6,与其他方法相比提升明显。结论 结合感知损失的生成式对抗超分辨率重建算法准确恢复了图像的纹理细节,能够重建出视觉上舒适的高分辨率图像。    

14.  多层次结构生成对抗网络的文本生成图像方法  
   孙钰  李林燕  叶子寒  胡伏原  奚雪峰《计算机应用》,2019年第39卷第11期
   近年来,生成对抗网络(GAN)在从文本描述到图像的生成中已经取得了显著成功,但仍然存在图像边缘模糊、局部纹理不清晰以及生成样本方差小等问题。针对上述不足,在叠加生成对抗网络模型(StackGAN++)基础上,提出了一种多层次结构生成对抗网络(MLGAN)模型,该网络模型由多个生成器和判别器以层次结构并列组成。首先,引入层次结构编码方法和词向量约束来改变网络中各层次生成器的条件向量,使图像的边缘细节和局部纹理更加清晰生动;然后,联合训练生成器和判别器,借助多个层次的生成图像分布共同逼近真实图像分布,使生成样本方差变大,增加生成样本的多样性;最后,从不同层次的生成器生成对应文本的不同尺度图像。实验结果表明,在CUB和Oxford-102数据集上MLGAN模型的Inception score分别达到了4.22和3.88,与StackGAN++相比,分别提高了4.45%和3.74%。MLGAN模型在解决生成图像的边缘模糊和局部纹理不清晰方面有了一定提升,其生成的图像更接近真实图像。    

15.  基于生成对抗网络的地面新增建筑检测  
   王玉龙  蒲军  赵江华  黎建辉《计算机应用》,2019年第39卷第5期
   针对传统的基于地物纹理和空间特征的方法很难精确识别地面新增建筑的问题,提出了一种基于生成对抗网络的新增建筑变化检测模型(CDGAN)。首先,使用Focal损失函数改进传统图像分割网络(U-net),并以此作为模型的生成器(G),用于生成遥感影像的分割结果;然后,设计了一个16层的卷积神经网络(VGG-net)作为鉴别器(D),用于区分生成的结果和人工标注(GT)的真实结果;最后,对生成器和判别器进行对抗训练,从而得到具有分割能力的生成器。实验结果表明,CDGAN模型的检测准确率达到92%,比传统U-net模型的平均区域重合度(IU)提升了3.7个百分点,有效地提升了遥感影像中地面新增建筑物的检测精度。    

16.  基于逻辑校准的多分类残差网络的肺分割算法  
   雷雨婷  张东  杨双《半导体光电》,2021年第42卷第4期
   针对图像噪声以及血管、支气管等因素引起的肺分割困难的问题,提出了一种基于逻辑校准的多分类残差网络分割算法.该算法将图像区域划分为肺、背景及边界三类,通过扩大不同类型间的差异来提升分割准确率.算法先将图像分割为固定尺寸区域,然后利用残差网络提取纹理特征进行分类训练与测试,实现粗分割.最后对边界区域阈值处理实现细分割.利用公开数据集对该算法进行了测试,实验结果表明,此分割算法在召回率、精确率以及交并比等方面均优于当下前沿的分割网络之一的U-Net,分别达到99.79%,98.13%和97.83%,可为后续的肺部疾病临床诊断提供参考依据.    

17.  基于残差模块和自注意力机制GAN的脑电信号增广方法  
   李明爱  彭伟民《计算机应用》,2022年第S1期
   针对脑电信号(EEG)数据量过少的问题,提出一种基于残差模块(ResBlock)和自注意力(Self-Attention)机制的生成对抗网络(GAN),记为RBSAGAN。该模型首先对ResBlock进行改进,设计了Up ResBlock和Down ResBlock网络用于提取信号中不同尺度感受野的特征并对数据维度进行扩大和缩小;然后根据Self-Attention机制设计1D Self-Attention网络挖掘EEG中各离散时刻之间的时间相关性;最后通过生成器和判别器的对抗训练生成逼真的信号。该模型在公开的BCI Competition IV dataset 2a数据集进行了大量实验,结果表明,RBSAGAN具有生成接近于真实脑电信号样本的能力,并且将分类器1D卷积网络(CNN)的平均识别率提升至96.04%,可以为EEG数据增广任务提供参考。    

18.  基于生成对抗网络的图像清晰度提升方法  
   范晓烨  王敏《计算机系统应用》,2021年第30卷第2期
   视频监控、军事目标识别以及消费型摄影等众多领域对图像清晰度有很高的要求.近年来,深度神经网络在视觉和定量评估的应用研究中取得较大进展,但是其结果一般缺乏图像纹理的细节,边缘过度平滑,给人一种模糊的视觉体验.本文提出了一种基于生成对抗网络的图像清晰度提升方法.为了更好的传递图像的细节信息,采用改进的残差块和跳跃连接作为生成网络的主体架构,生成器损失函数除了对抗损失,还包括内容损失、感知损失和纹理损失.在DIV2K数据集上的实验表明,该方法在提升图像清晰度方面有较好的视觉体验和定量评估.    

19.  基于生成对抗网络的图像清晰度提升方法  
   牟森  陈洪刚  卿粼波  何小海  王思怡《计算机系统应用》,2021年第30卷第2期
   视频监控、军事目标识别以及消费型摄影等众多领域对图像清晰度有很高的要求.近年来,深度神经网络在视觉和定量评估的应用研究中取得较大进展,但是其结果一般缺乏图像纹理的细节,边缘过度平滑,给人一种模糊的视觉体验.本文提出了一种基于生成对抗网络的图像清晰度提升方法.为了更好的传递图像的细节信息,采用改进的残差块和跳跃连接作为生成网络的主体架构,生成器损失函数除了对抗损失,还包括内容损失、感知损失和纹理损失.在DIV2K数据集上的实验表明,该方法在提升图像清晰度方面有较好的视觉体验和定量评估.    

20.  基于滑差率分析的轮轨材料摩擦磨损特性研究  
   吴国新  徐小力  蒋章雷  左云波《电子测量与仪器学报》,2016年第30卷第10期
   随着列车速度的提高和轴重的加大,轮轨的失效往往影响了铁路的正常运行,甚至存在着安全隐患。目前对于影响轮轨磨损性能的研究仅限于轮轨材料、接触应力、轴重、车速等因数,尚未对滑差率的影响进行研究。提出基于滑差率分析的重载轮轨间的磨损行为故障研究,利用GPM-30型滚动接触摩擦磨损试验机,采用双轮对接接触方式,建立轮轨间隙曲线与轮对横移量之间的面积模型,通过改变滑差率来研究其轮轨摩擦磨损性能的变化规律。对磨损后试样表面的扫描电镜观察,分别阐述了不同滑差率下车轮试样表面以及钢轨试样表面的磨损形貌特性,试验验证了不同滑差率对轮轨磨损性能的影响因素。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号