首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article studies discrete-time adaptive failure compensation control of systems with uncertain actuator failures, using an indirect adaptive control method. A discrete-time model of a continuous-time linear system with actuator failures is derived and its key features are clarified. A new discrete-time adaptive actuator failure compensation control scheme is developed, which consists of a total parametrisation of the system with parameter and failure uncertainties, a stable adaptive parameter estimation algorithm, and an on-line design procedure for feedback control. This work provides a new design of direct adaptive compensation of uncertain actuator failures, using an indirect adaptive control method. Such an adaptive design ensures desired closed-loop system stability and tracking properties despite uncertain actuator failures. Simulation results are presented to show the desired adaptive actuator failure compensation performance.  相似文献   

2.
A direct adaptive approach is developed for control of a class of multi-input multi-output (MIMO) nonlinear systems in the presence of uncertain failures of redundant actuators. An adaptive failure compensation controller is designed which is capable of accommodating uncertainties in actuator failure time instants, values and patterns. A realistic situation is studied with fixed grouping of actuators and proportional actuation within actuator groups. The adaptive control system is analyzed, to show its desired stability and asymptotic tracking properties in the presence of actuator failure uncertainties. As an application, such an adaptive controller is used for actuator failure compensation of a twin otter aircraft longitudinal model, with design conditions verified and control structure and adaptive laws developed for a nonlinear aircraft dynamic model. The effectiveness of adaptive failure compensation is demonstrated by simulation results.  相似文献   

3.
An adaptive inverse controller is developed for feedback linearizable nonlinear systems with nonsmooth actuator nonlinearities. The use of an actuator nonlinearity inverse and a feedback linearizing controller leads to an error equation suitable for deriving an adaptive update law for the inverse parameters. Closed-loop signal boundedness is proved analytically, and system performance improvement is shown by simulation results. Such adaptive control schemes are also developed for multivariable nonlinear systems with actuator nonlinearities. For nonlinear systems that do not possess a relative degree, dynamic extension is employed to realize adaptive inverse compensation designs for actuator nonlinearities. These adaptive designs ensure closed-loop stability in the presence of uncertain actuator nonlinearities  相似文献   

4.
文利燕  陶钢  姜斌  杨杰 《自动化学报》2022,48(1):207-222
本文针对因多重不确定执行器故障而引起系统动态突变的非线性系统,设计了一种基于多模型切换的自适应执行器故障补偿控制策略,以提高系统应对动态突变的能力,同时实现不确定执行器故障的快速精确补偿.针对执行器故障模式的不确定性问题,采用基于多模型的参数估计方法,设计了自适应控制器组;基于最优性能指标函数,提出了一种控制切换机制,...  相似文献   

5.
Adaptive actuator failure compensation for parametric-strict-feedback systems is studied under different system structure conditions. Adaptive state feedback control schemes are developed, which ensure asymptotic output tracking and closed-loop signal boundedness. An adaptive control scheme is applied to a twin otter aircraft longitudinal nonlinear dynamics model in the presence of unknown failures in a two-segment elevator servomechanism. Simulation results verify the effectiveness of adaptive actuator failure compensation for desired system performance.  相似文献   

6.
This paper is concerned with the robust adaptive fault‐tolerant compensation control problem via sliding‐mode output feedback for uncertain linear systems with actuator faults and exogenous disturbances. Mismatched disturbance attenuation is performed via H norm minimization. By incorporating the matrix full‐rank factorization technique with sliding surface design successfully, the total failure of certain actuators can be coped with, under the assumption that redundancy is available in the system. Without the need for a fault detection and isolation mechanism, an adaptive sliding mode controller, where the gain of the nonlinear unit vector term is updated automatically to compensate the effects of actuator faults, is designed to guarantee the asymptotic stability and adaptive H performance of closed‐loop systems. The effectiveness of the proposed design method is illustrated via a B747‐100/200 aircraft model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
An adaptive compensation control scheme is proposed by using backstepping techniques for a class of uncertain nonlinear systems preceded by m hysteretic actuators, which exhibit unknown backlash nonlinearity and possibly experience unknown failures. An estimated smooth inverse of the actuator backlash is utilized in the controller design to compensate for the effects of the backlash and actuator failures. It is shown that the designed controllers can ensure all signals of closed‐loop system bounded for any failure pattern of hysteretic actuators and tracking performance is also maintained. Simulation studies confirm the effectiveness of the proposed controller, especially the improvement of system performances. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, new necessary and sufficient conditions are derived for actuator failure compensation for linear time-invariant systems with actuator failures characterized by unknown input signals at some unknown fixed values and time instants, for state tracking with state feedback. It is shown that the number of fully functional actuators is crucial in determining the actuation range, which specifies the compensation design conditions in terms of system actuation structure. Such conditions are required for both a nominal design using system knowledge and an adaptive design without system knowledge. An adaptive actuator failure compensation control scheme based on relaxed system actuation conditions is developed for systems with unknown dynamic parameters and actuator failure parameters including failure values, times, and patterns. Simulation results are presented to verify the desired system performance with failure compensation  相似文献   

9.
To adaptively reject the effect of certain unmatched input disturbances on the output of a linear time-invariant system, a transfer function matching condition is needed. A lemma which presents a novel basic property of linear systems is derived to characterize system conditions for such transfer function matching. An adaptive disturbance rejection control scheme is developed for such systems with uncertain dynamics parameters and disturbance parameters. This adaptive control technique is applicable to control of systems with actuator failures whose failure values, failure time instants, and failure patterns are unknown. A solution is presented to this adaptive actuator failure compensation problem, which ensures closed-loop stability and asymptotic output tracking, in the presence of any up to m−1 uncertain failures of the total m actuators. Desired adaptive system performance is verified by simulation results.  相似文献   

10.
Adaptive compensation for infinite number of actuator failures or faults   总被引:1,自引:0,他引:1  
It is both theoretically and practically important to investigate the problem of accommodating infinite number of actuator failures or faults in controlling uncertain systems. However, there is still no result available in developing adaptive controllers to address this problem. In this paper, a new adaptive failure/fault compensation control scheme is proposed for parametric strict feedback nonlinear systems. The techniques of nonlinear damping and parameter projection are employed in the design of controllers and parameter estimators, respectively. It is proved that the boundedness of all closed-loop signals can still be ensured in the case with infinite number of failures or faults, provided that the time interval between two successive changes of failure/fault pattern is bounded below by an arbitrary positive number. The performance of the tracking error in the mean square sense with respect to the frequency of failure/fault pattern changes is also established. Moreover, asymptotic tracking can be achieved when the total number of failures and faults is finite.  相似文献   

11.
在多输入多输出(Multiple-input multiple-output,MIMO)非线性系统的执行器故障容错控制问题中,控制器能够处理的执行器故障集合的大小与执行器分组方法有很大关系.为扩大系统可处理的执行器故障集合,本文针对一类具有执行器故障的MIMO非线性最小相位系统,提出基于多模型切换(Multiple model switching and tuning,MMST)执行器分组的自适应补偿控制方法.考虑系统的执行器卡死、部分失效和完全失效故障,在微分几何反馈线性化的基础上,研究基于多模型切换的执行器分组切换指标和切换策略,设计了基于反演控制的自适应补偿跟踪控制律,所设计的控制律能保证系统在执行器故障时闭环稳定,渐近跟踪给定的参考信号,且提出的分组方法扩大了可补偿的执行器故障集合.仿真结果表明了本文设计方法的有效性.  相似文献   

12.
Traditional adaptive event‐triggered design methods compensated for the event‐triggered error are not direct, and the stability analysis of resulting close‐loop systems is rather complicated. To alleviate the above restrictions, we propose a direct and simple event‐triggered co‐design method to solve the tracking control problem for parameter strict‐feedback systems with actuator faults and uncertain disturbances. By introducing a compensating terms in a smooth function form of a conventional control law and certain positive integrable functions, the effects of actuator faults and event‐triggered error can be compensated completely. Such a direct design method has the following features: (i) a direct compensation of the event‐triggered error is achieved without introducing any extra design parameters; (ii) it is not necessary to know any bound information on the parameters of event‐triggered threshold, and global asymptotic tracking control of the overall closed‐loop system is achieved; and (iii) the resulting stability criteria of the proposed event‐triggered control design are much simpler and easier to fulfill by virtue of the introduced co‐design method. Simulations are then carried out to validate the proposed schemes.  相似文献   

13.
程艳青  朱纪洪 《自动化学报》2021,47(6):1327-1334
本文从理论上分析了执行机构带宽对动态逆闭环控制系统动态特性影响, 发现较低的执行机构带宽会在伪线性系统中引入一个非线性干扰项, 为此提出了两种方法来消除这个非线性干扰项, 一个是采用参考模型的思想设计补偿器提高执行机构子系统的等效带宽, 另一个思路则是直接在非线性反馈项中引入补偿直接对消非线性干扰项. 仿真结果表明, 两类方法都能较好地消除非线性干扰项, 直接补偿方法能精确消除干扰项, 但需要准确动力学模型, 提高等效带宽的方法虽然是近似的, 但能方便地引入自适应算法, 可以抑制执行机构模型参数不确定的影响.  相似文献   

14.
An adaptive disturbance rejection control scheme is developed for uncertain multi-input multi-output nonlinear systems in the presence of unmatched input disturbances. The nominal output rejection scheme is first developed, for which the relative degree characterisation of the control and disturbance system models from multivariable nonlinear systems is specified as a key design condition for this disturbance output rejection design. The adaptive disturbance rejection control design is then completed by deriving an error model in terms of parameter errors and tracking error, and constructing adaptive parameter-updated laws and adaptive parameter projection algorithms. All closed-loop signals are guaranteed to be bounded and the plant output tracks a given reference output asymptotically despite the uncertainties of system and disturbance parameters. The developed adaptive disturbance rejection scheme is applied to turbulence compensation for aircraft fight control. Simulation results from a benchmark aircraft model verify the desired system performance.  相似文献   

15.
In this paper, a supervisory adaptive fault‐tolerant control scheme is proposed for a class of uncertain nonlinear systems with multiple inputs. The multiple inputs are the outputs of an actuator group that may act either on one control surface or on multiple control surfaces and may fail during operation. With some actuator groups as backups, the supervisory adaptive control includes 2 modes: the adaptive compensation mode and the switching mode. The former is used to compensate for the failure of an actuator group as long as at least one actuator of the group works normally, and the latter, to switch the controller from a failed group to a healthy one when the failure is detected by one of the monitoring functions that are constructed to supervise some variables related to system stability. It is shown that with the proposed scheme, all signals of the closed‐loop system are bounded, and prescribed transient and steady state performance of the tracking error can be guaranteed. An aircraft example is used to demonstrate the application of the proposed scheme.  相似文献   

16.
针对存在不确定执行器故障和未知不匹配干扰的可反馈线性化非线性系统, 提出一种鲁棒自适应容错控 制策略. 首先分别给出系统输入和扰动关于系统输出的相对阶, 针对两种相对阶之间的不同关系设计鲁棒控制器, 抑制干扰对系统输出的影响; 然后针对各故障情况分别设计容错控制器; 最后将各控制器进行融合得到一个综合 故障补偿控制器, 从而有效解决故障模式、类型、大小、时间和外界干扰等多重不确定性, 保证闭环系统稳定和渐近 输出跟踪性能. 仿真结果验证了所设计控制方案的可行性与有效性.  相似文献   

17.
This paper studies design and implementation of an enhanced multivariable adaptive control scheme for an uncertain nonlinear process exposed to actuator faults. For adaptive fault compensation, a model reference adaptive control (MRAC) strategy is utilized as main controller. A new adaptation algorithm making possible to improve transient performance of adaptive control is integrated to the controller. With the help of further modifications, some restrictive conditions on multivariable adaptive design are relaxed so that the system requires less plant information. The resulting controller has a simpler structure than the other matrix factorization based controllers. At the final stage of design, a robust adaptive control scheme is obtained with consideration of practical implementation problems such as sensor noises, external disturbances and unmodeled​ system dynamics. It is proved that the controller guarantees closed-loop signal boundedness and asymptotic output tracking. Real-time experiment results acquired from quadruple tank benchmark system are presented in order to exhibit the effectiveness of the proposed scheme.  相似文献   

18.
This paper presents a robust adaptive state feedback control scheme for a class of parametric-strict-feedback nonlinear systems in the presence of time varying actuator failures. The designed adaptive controller compensates a general class of actuator failures without any need for explicit fault detection. The parameters, times, and patterns of the considered failures are completely unknown. The proposed controller is constructed based on a backstepping design method. The global boundedness of all the closed-loop signals is guaranteed and the tracking error is proved to converge to a small neighborhood of the origin. The proposed approach is employed for a two-axis positioning stage system as well as an aircraft wing system. The simulation results show the correctness and effectiveness of the proposed robust adaptive actuator failure compensation approach.  相似文献   

19.
This paper aims at investigating the fuzzy adaptive control design for uncertain multivariable systems with unknown actuator nonlinearities and unknown control direction that possibly exhibit time-delay. The actuator nonlinearities involve dead-zone or backlash-like hysteresis, while the control direction is closely related to the sign of the control gain matrix. Two fuzzy adaptive controllers are proposed to deal with such an issue. The design of the first controller is mainly carried out in the free time-delay case, while the second control design is performed assuming that the system exhibits time-varying delays. Of practical interest, the adaptive compensation of the effects of the actuator nonlinearities requires neither the knowledge of their parameters nor the construction of their inverse. Furthermore, the lack of knowledge of the control direction is handled by incorporating in the control law a Nussbaum-type function. The effectiveness of the proposed fuzzy adaptive controllers is illustrated through simulation results.  相似文献   

20.
In this paper, a modified adaptive actuator failure compensation scheme is proposed for a class of uncertain multi-input and single-output (MISO) nonlinear systems in the output-feedback form. We first establish a new parametric model with unknown plant parameters and actuator failure parameters, which differs from some existing results. Then, an adaptive compensation controller is constructed by utilizing the backstepping technique. The boundedness of all closed-loop signals is guaranteed. The tracking error is proved to converge to zero asymptotically. Finally, two simulation examples are provided to demonstrate the effectiveness of the proposed design scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号