首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An adaptive output feedback controller for single input feedback linearizable systems is proposed. The output derivatives are estimated with a state high-gain observer, and the matched uncertainties are handled using a modelling error compensation method. Compared with existing adaptive methods, this approach avoids overparameterizations yielding an (n+1)-order compensator, where n is the system dimension. Semiglobal stability is proven with the aid of existing results on the stability of controlled nonlinear systems with high-gain state observation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
This article studies discrete-time adaptive failure compensation control of systems with uncertain actuator failures, using an indirect adaptive control method. A discrete-time model of a continuous-time linear system with actuator failures is derived and its key features are clarified. A new discrete-time adaptive actuator failure compensation control scheme is developed, which consists of a total parametrisation of the system with parameter and failure uncertainties, a stable adaptive parameter estimation algorithm, and an on-line design procedure for feedback control. This work provides a new design of direct adaptive compensation of uncertain actuator failures, using an indirect adaptive control method. Such an adaptive design ensures desired closed-loop system stability and tracking properties despite uncertain actuator failures. Simulation results are presented to show the desired adaptive actuator failure compensation performance.  相似文献   

3.
The problem of linear systems subject to actuator faults(outage,loss of efectiveness and stuck),parameter uncertainties and external disturbances is considered.An active fault compensation control law is designed which utilizes compensation in such a way that uncertainties,disturbances and the occurrence of actuator faults are account for.The main idea is designing a robust adaptive output feedback controller by automatically compensating the fault dynamics to render the close-loop stability.According to the information from the adaptive mechanism,the updating control law is derived such that all the parameters of the unknown input signal are bounded.Furthermore,a disturbance decoupled fault reconstruction scheme is presented to evaluate the severity of the fault and to indicate how fault accommodation should be implemented.The advantage of fault compensation is that the dynamics caused by faults can be accommodated online.The proposed design method is illustrated on a rocket fairing structural-acoustic model.  相似文献   

4.
Adaptive actuator failure compensation for parametric-strict-feedback systems is studied under different system structure conditions. Adaptive state feedback control schemes are developed, which ensure asymptotic output tracking and closed-loop signal boundedness. An adaptive control scheme is applied to a twin otter aircraft longitudinal nonlinear dynamics model in the presence of unknown failures in a two-segment elevator servomechanism. Simulation results verify the effectiveness of adaptive actuator failure compensation for desired system performance.  相似文献   

5.
This paper investigates fault‐tolerant control (FTC) for feedback linearizable systems (FLSs) and its applications. The dynamic effects caused by the actuator faults on the feedback linearized model are firstly analyzed, which reveals that under actuator faults, the control input in the linearized model is affected by uncertain terms. In the framework of model reference control, the first FTC strategy is proposed as a robust controller, which achieves asymptotic tracking control of the FLS under actuator faults. A disadvantage of this strategy is that it relies on explicit information about several parameters in the actuator faults. This requirement is later relaxed by combining the robust FTC strategy with an adaptive technique to generate the adaptive FTC law, which is then improved to alleviate possible chattering of the actuator and estimation drifting of the adaptive parameter. Finally, the proposed FTC strategies are evaluated by reference command tracking control of a pendulum and an air‐breathing hypersonic vehicle under actuator faults. Simulation results demonstrate good tracking performance, which confirms effectiveness of the proposed strategies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
An adaptive compensation control scheme is proposed by using backstepping techniques for a class of uncertain nonlinear systems preceded by m hysteretic actuators, which exhibit unknown backlash nonlinearity and possibly experience unknown failures. An estimated smooth inverse of the actuator backlash is utilized in the controller design to compensate for the effects of the backlash and actuator failures. It is shown that the designed controllers can ensure all signals of closed‐loop system bounded for any failure pattern of hysteretic actuators and tracking performance is also maintained. Simulation studies confirm the effectiveness of the proposed controller, especially the improvement of system performances. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
针对一类具有执行器卡死或/和变执行器故障的多输入多输出(MIMO)非线性最小相位系统提出了自适应容错跟踪控制方案.结合系统特征对系统执行器进行分类,用神经网络逼近执行器未知故障函数,采用模型参考自适应容错控制方法设计控制律.所设计的控制律不仅保证闭环系统稳定,而且跟踪误差一致最终有界.仿真结果表明了所提出方法的有效性.  相似文献   

8.
This paper studies the problem of global practical tracking by output feedback for a class of uncertain nonlinear systems with unmeasured state‐dependent growth and unknown time‐varying control coefficients. Compared with the closely related works, the remarkableness of this paper is that the upper and lower bounds of unknown control coefficients are not required to be known a priori. Motivated by our recent works, by combining the methods of universal control and deadzone with the backstepping technique and skillfully constructing a novel Lyapunov function, we propose a new adaptive tracking control scheme with appropriate design parameters. The new scheme guarantees that the state of the resulting closed‐loop system is globally bounded while the tracking error converges to a prescribed arbitrarily small neighborhood of the origin after a finite time. Two examples, including a practical example, are given to illustrate the effectiveness of the theoretical results.  相似文献   

9.
This paper studies the adaptive state feedback control for a class of switched time‐varying stochastic high‐order nonlinear systems under arbitrary switchings. Based on the common Lyapunov function and using the inductive method, virtual controllers are designed step by step and the form of the input signal of the system is constructed at the last. The unknown parameters are addressed by the tuning function method. In particular, both the designed state feedback controller and the adaptive law are independent of switching signals. Based on the designed controller, the boundness of the state variables can be guaranteed in probability. Furthermore, without considering the Wiener process or with the known parameter in the assumption, adaptive finite‐time stabilization and finite‐time stabilization in probability can be obtained, respectively. Finally, numerical simulation results are presented to illustrate the effectiveness of the proposed method.  相似文献   

10.
An adaptive sliding‐mode unit vector control approach based on monitoring functions to deal with disturbances of unknown bounds is proposed. An uncertain multivariable linear system is considered with a quite general class of nonsmooth disturbances. Global stabilization/tracking is demonstrated using either state or output feedback. The proposed adaptation method makes the control gain less conservative, becoming large enough when the disturbance grows and becoming smaller when it decreases, leading to reduced chattering effects. In contrast to previous methods, the new switching scheme is able to guarantee a prespecified transient time, maximum overshoot, and steady‐state error for multivariable uncertain plants. The proposed technique is applied to the trajectory tracking control of a surface vessel subjected to ocean currents, wind, and waves. Simulations are presented to show the performance of the new adaptation scheme in this adverse scenario of possibly growing, temporarily large, or vanishing exogenous disturbances.  相似文献   

11.
针对存在不确定执行器故障和未知不匹配干扰的可反馈线性化非线性系统, 提出一种鲁棒自适应容错控 制策略. 首先分别给出系统输入和扰动关于系统输出的相对阶, 针对两种相对阶之间的不同关系设计鲁棒控制器, 抑制干扰对系统输出的影响; 然后针对各故障情况分别设计容错控制器; 最后将各控制器进行融合得到一个综合 故障补偿控制器, 从而有效解决故障模式、类型、大小、时间和外界干扰等多重不确定性, 保证闭环系统稳定和渐近 输出跟踪性能. 仿真结果验证了所设计控制方案的可行性与有效性.  相似文献   

12.
This paper proposes a novel dynamic surface control algorithm for a class of uncertain nonlinear systems in completely non‐affine pure‐feedback form. Instead of using the mean value theorem, we construct an affine variable at each design step, and then neural network is employed to deduce a virtual control signal or an actual control signal. As a result, the unknown control directions and singularity problem raised by the mean value theorem is circumvented. The proposed scheme is able to overcome the explosion of complexity inherent in backstepping control and guarantee the tracking performance by introducing an initialization technique based on a surface error modification. Simulation results are presented to demonstrate the efficiency of the proposed scheme. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
In this article, considering actuator constraints and possible failures, an adaptive compensation control scheme is developed to realize tracking control for a class of uncertain nonlinear systems with quantized inputs. A new variable is generated to evaluate the effect of actuator saturation and is used in the process of controller design to compensate for the influence of actuator saturation constraint. Moreover, the controller is able to show certain accommodation capability to tolerate possible actuator failures and input quantization error via integrating parameter update process of unknown fault constants into adaption of parametric uncertainties under the backstepping procedure. Specifically, actuator saturation effect and possible actuator failures as well as input quantization error can be dealt with uniformly under the framework of the proposed scheme and the control system has certain robustness to external disturbances. It is proved that all the signals of the closed‐loop system are ensured to be bounded and the tracking error is enabled to converge toward a compact set, which is adjustable by tuning design parameters. Finally, experiments are carried out on an active suspension plant to illustrate the effectiveness of the proposed control scheme.  相似文献   

14.
A direct adaptive approach is developed for control of a class of multi-input multi-output (MIMO) nonlinear systems in the presence of uncertain failures of redundant actuators. An adaptive failure compensation controller is designed which is capable of accommodating uncertainties in actuator failure time instants, values and patterns. A realistic situation is studied with fixed grouping of actuators and proportional actuation within actuator groups. The adaptive control system is analyzed, to show its desired stability and asymptotic tracking properties in the presence of actuator failure uncertainties. As an application, such an adaptive controller is used for actuator failure compensation of a twin otter aircraft longitudinal model, with design conditions verified and control structure and adaptive laws developed for a nonlinear aircraft dynamic model. The effectiveness of adaptive failure compensation is demonstrated by simulation results.  相似文献   

15.
In this article, adaptive state feedback stabilising controllers for networked adaptive control systems with unknown actuator failures are developed. The problems of networked control systems (NCSs) such as transmission delays and data-packets dropout, induced by the insertion of data networks in the feedback adaptive control loops are also considered. The novelty of this article consists in the combination of different aspects in NCSs: state tracking control of systems with unknown parameters, unknown actuator failures, network-induced delays and data-packets dropout. Normalised adaptive laws are designed for updating the controller parameters. Sufficient conditions for Lyapunov stability are derived in the case of uncertainty due to actuator failures, delays and data-packets dropout. Simulation results are given to illustrate the effectiveness of our design approach.  相似文献   

16.
This paper is concerned with the problem of global adaptive stabilization by output feedback for a class of planar nonlinear systems with uncertain control coefficient and unknown growth rate. The control coefficient is not supposed to have known upper bound, and this relaxes the corresponding requirement in the existing literature (see e.g. 1 , 2 . First, by the universal control method, an observer is constructed based on the dynamic high‐gain K‐filters. Then, the control design procedure is developed to obtain the stabilizing controller and dynamic compensator for the uncertainties in the control coefficient. It is shown that the global stability of the closed‐loop system can be guaranteed by the appropriate choice of the design parameters. A simulation example is also provided to illustrate the correctness of the theoretical results. © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society.  相似文献   

17.
In this paper, an adaptive output feedback control technique is proposed for a class of nonlinear systems with unknown parameters, unknown nonlinear functions, quantised input and possible actuator failures up to infinity. A modified backstepping approach is proposed by the use of high-gain K-filters, hyperbolic tangent function property and bound-estimation approach to compensate for the effect of possible number of actuator failures up to infinity, input quantisation and unknown nonlinear functions. It is proved both mathematically and by simulation that with the proposed controller, all the signals of the closed-loop system are globally bounded despite of input quantisation, unknown nonlinear functions and possible number of actuator failures up to infinity.  相似文献   

18.
This article develops an adaptive fuzzy control method for accommodating actuator faults in a class of unknown nonlinear systems with unmeasured states. The considered faults are modelled as both loss of effectiveness and lock-in-place (stuck at unknown place). With the help of fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy adaptive observer is developed for estimating the unmeasured states. Combining the backstepping technique with the nonlinear tolerant-fault control theory, a novel adaptive fuzzy faults-tolerant control approach is constructed. It is proved that the proposed control approach can guarantee that all the signals of the resulting closed-loop system are bounded and the tracking error between the system output and the reference signal converges to a small neighbourhood of zero by appropriate choice of the design parameters. Simulation results are provided to show the effectiveness of the control approach.  相似文献   

19.
This paper is devoted to output‐feedback adaptive control for a class of multivariable nonlinear systems with both unknown parameters and unknown nonlinear functions. Under the Hurwitz condition for the high‐frequency gain matrix, a robust adaptive backstepping control scheme is proposed, which is able to guarantee the tracking performance and needs only one parameter to be updated online regardless of the system order and input–output dimension. To cope with the unknown nonlinear functions and improve the tracking performance, a kind of high‐gain K‐filters is introduced. It is proved that all signals of the closed‐loop system are globally uniformly bounded. Simulation results on coupled inverted double pendulums are presented to illustrate the effectiveness of the proposed scheme. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号