首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
The operation of centrifugal pumps can generate instabilities and pressure pulsations that may be detrimental to the integrity and performance of the pump. In the present study a numerical investigation of the time variation of pressure within a complete centrifugal pump was undertaken. A range of parameters and three flow rates were investigated and the pulsations were extracted at 15 different locations covering important pump regions. The transient flow results compared reasonably with experimental data obtained in a limited experimental survey and clearly indicated the pump locations experiencing the largest pulsation levels. It was also noted that monitoring pulsations at the top dead centre of the pump volute casing would provide a better indication of internal pump pulsations than monitoring at the discharge.  相似文献   

2.
Pressure pulsations may be troublesome during the operation and performance of centrifugal pumps. Such pressure pulsations have traditionally been investigated experimentally but numerical analysis techniques allow these effects to be explored. The multi-block, structured grid CFD code TASCflow has been used to investigate the time variation of pressure within a complete double entry, double volute centrifugal pump. This investigation has taken the form of a parametric study covering four geometric parameters, namely the cutwater gap, vane arrangement, snubber gap and the sidewall clearance. Taguchi methods allowed the number of transient analyses to be limited to a total of 27. Three flow rates were investigated and the pulsations were extracted at 15 different locations covering important pump regions. Taguchi post-processing analysis tools were used to rank the relative importance of the four geometric parameters at each location for each flow rate. The cutwater gap and vane arrangement were found to exert the greatest influence across the various monitored locations and the flow range. A rationalisation process aimed at increased component life and reduced noise/vibration through reductions in pressure pulsations has produced geometric recommendations, which should be useful to designers.  相似文献   

3.
A detailed experimental and numerical investigation of the unsteady interaction of secondary flow vortices in turbine endwall region was performed with the effect of upstream periodic wakes. The flow field was investigated respectively in a linear turbine cascade and a turbine rotor. The study revealed the physical mechanisms of unsteady interaction between upstream wake and secondary vortices. The influence of the upstream wake on the performance of turbine endwall region was also discussed.The flow field at the exit of the turbine blade row showed a decrease in passage vortex strength and loss due to the upstream wake transport. Two interaction mechanisms are proposed whereby passage vortex loss decreases. They are the upstream wake-pressure side leg of the horseshoe vortex interaction and the upstream wake-passage vortex interaction. The transport of upstream wake can suppress the development of pressure side leg of the horseshoe vortex and passage vortex because of the “negative jet” influence of the wake.  相似文献   

4.
Investigation an efficient shape optimization method for centrifugal pump and other turbo-machine is significant to reduce time consumption of process and increase accuracy and modification. For analysis an efficient shape optimization procedure, slurry flow in centrifugal pump is investigated. Since a centrifugal water pump has been not designed to carry out slurry flows, its performance decreases and energy consumption of this kind of pump increases. Therefore, improvement of performance and reduction of energy consumed for these pumps are the major issues. Since the performance of a centrifugal pump strictly depends on its impeller shape, in this study, the shape of impeller was optimized in order to achieve a higher efficiency for slurry flow. To optimize the impeller geometry and to improve the performance of Berkeh 32–160 pump as for the case study, Artificial Neural Networks (ANN) and Eagle Strategy (ES) algorithms have been coupled with a validated 3D Navier–Stokes equations for two phase flow based on Eulerian-Eulerian model. In the next step, the pump experimentally tested in an established slurry flow test rig in laboratory. Measured data were used to verify the numerical results of initial pump with slurry flow. Finally, the complete numerical characteristic curves of the pump with the optimized impeller were compared to the validated numerical characteristic curves of that with the initial impeller to verify optimization. An efficiency improvement of 3.33% at only 9.9% increasing of head has been obtained for optimized geometry. The results indicated a reasonable improvement in the optimal design of pump impeller and a higher performance using the ES algorithm. Furthermore the ES and PSO algorithm was compared and results shows that ES is efficient than PSO algorithm in this application and this methodology is more efficient than other surrogate methods.  相似文献   

5.
This paper reports an experimentally validated numerical analysis of fluid flow through a radial diffuser comprising two concentric and parallel disks. The flow is supplied axially by a feeding orifice placed in the back disk and becomes radial after being deflected by the front disk. The main purpose of the study is to assess the effect of a chamfer at the exit of the feeding orifice. Due to the irregular flow geometry, a mixed Eulerian-Lagrangian method is employed to numerically solve the fluid flow. The model is validated by comparing the numerical results with experimental data for pressure distribution on the front disk, as a function of the gap between the disks and the Reynolds number. Results for pressure on the front disk and effective flow and force areas show that the flow is significantly affected by chamfer angles as small as 5°.  相似文献   

6.
A numerical methodology is developed to simulate the turbulent flow in a 2-dimensional centrifugal pump impeller and to compute the characteristic performance curves of the entire pump. The flow domain is discretized with a polar, Cartesian mesh and the Reynolds-averaged Navier-Stokes (RANS) equations are solved with the control volume approach and the k-ε turbulence model. Advanced numerical techniques for adaptive grid refinement and for treatment of grid cells that do not fit the irregular boundaries are implemented in order to achieve a fully automated grid construction for any impeller design, as well as to produce results of adequate precision and accuracy. After estimating the additional hydraulic losses in the casing and the inlet and outlet sections of the pump, the performance of the pump can be predicted using the numerical results from the impeller section only. The regulation of various energy loss coefficients involved in the model is carried out for a commercial pump, for which there are available measurements. The predicted overall efficiency curve of the pump was found to agree very well with the corresponding experimental data. Finally, a numerical optimization algorithm based on the unconstrained gradient approach is developed and combined with the evaluation software in order to find the impeller geometry that maximizes the pump efficiency, using as free design variables the blade angles at the leading and the trailing edge. The results verified that the optimization process can converge very fast and to reasonable optimal values.  相似文献   

7.
High pressure variable displacement axial piston pumps are subject to complex dynamic phenomena. Their analysis is difficult, additionally complicated by leakage of the working fluid. Analytically gap flow is calculated with the Reynolds equation which describes the pressure distribution in a thin lubricating layer. The paper presents various approaches to analyze gap flow both in traditional axial piston pump and novel type of hydraulic pump, designed at the Polish Gdansk Institute of Technology. Because of large aspect ratio between the height of the gap and the size of pump elements, the authors present the numerical simulation approach using a local model to define a lubrication gap, linked to a global model of a pump from which boundary conditions were imported. User defined functions implemented in Fluent and Excel were used to calculate the pressure and velocity fields and assess the fluid flow rate.  相似文献   

8.
对某前输出轴涡轴发动机高空模拟试验进气装置进行了设计,通过三维数值仿真的方法对比分析了典型工况进气涡壳内有无整流装置情况下发动机进口的流场品质,确定在增加整流装置的情况下,发动机进口压力不均匀度小于1%,温度不均匀度小于1%。为降低进气装置压力损失,对进气装置进行了优化设计,仿真结果表明,在最大流量下,压损降低了30%。最后通过吹风试验验证了流场品质满足设计要求,解决了涡壳进气方式产生的流场畸变问题。同时将导管流量数据与导流盆流量数据进行对比,证明了导流盆测流量方案的合理性。该设计可在此类涡轴发动机高空模拟试验中推广运用。  相似文献   

9.
In this paper, a PZT micropump excited by amplified squarewave signals with various frequencies was used to study the transient flow behaviors in an obstacle-type valveless micropump. A micro-particle-image-velocimetry (micro-PIV) with an external trigger was developed to obtain flow fields at the outlet and around the obstacle with various phases in a cycle. In comparison with previous studies on the pump performance, such as pump pressure and volume flow rate, more detailed information about the pump was obtained. The velocity profiles and periodic sectional mean velocities exhibited the unsteady flow nature. The total net flow generation efficiency per cycle was obtained experimentally by integrating the phase-dependent velocities. The flow recirculation around the obstacle was observed and quantified to investigate the influence on the pump performance. The duration, circulation, and the size of the recirculation regions indicated that this flow behavior could enhance the flow-directing capability. These results are very useful for the design and improvement of obstacle-type valveless micropumps.  相似文献   

10.
Matar  M.  Al-Halhouli  A. T.  Dietzel  A.  Büttgenbach  S. 《Microsystem Technologies》2017,23(7):2475-2483

This paper presents the development of a new design of the microfabricated centrifugal force pump. The pumping concept is based on running an impeller (a rotor including permanent magnets carrying straight and backward blades) within an integrated synchronous motor, which can be operated at different rotational speeds to pump water. The impeller is 5.5 mm in diameter, and is 1.5 mm in height. This micropump with 7-straight-blade impeller can operate smoothly up to a rotational speed of 9000 rpm. It can deliver a non-pulsating maximum flow rate of up to 12 ml/min and allows water to be pumped up to a 24 cm water head. Additionally, the micropump with the backward-blade-impeller pump delivered a flow rate of up to 14.3 ml/min. at a rotational speed of 11,400 rpm with no back pressure. The micropump was patterned using a series of microfabrication processes including sputtering, photolithography and electroplating within a clean room. Such a pump can be integrated into a system of a compact size and can provide a wide range of flow rates. It could also be a promising device for use within biological and micro biomedical fields. To our knowledge, this is the smallest centrifugal pump in the world with an integrated electromagnetic synchronous motor that offers such high flow rates.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号