首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 82 毫秒
1.
光纤Bragg 光栅的温度传感研究􀀁   总被引:2,自引:0,他引:2  
本文分析了光纤 Bragg光栅在受到温度调制时的滤波特性。与温度对光纤光栅反射谱波长的影响相比 ,对其带宽的影响可忽略。实验中 ,光纤光栅受温度的调制 ,并且其反射谱由光谱仪记录。结果表明该光纤 Bragg光栅对温度产生的波长偏移是 0 .0 0 991nm/℃。值得注意的是实验中最大标准误差为 0 .0 3nm,能满足目前波分复用技术所需的信道精度。  相似文献   

2.
光纤Bragg 光栅传感技术及其应用   总被引:3,自引:0,他引:3  
阐述了光纤Bragg光栅传感器的基本工作原理、波长移动解调技术 ,概述了其近年来在复合材料及混凝土结构状态检测、电力工业以及能源化工等领域的实际应用情况 ,并分析了其发展前景 .  相似文献   

3.
光纤Bragg光栅与长周期光纤光栅比较及传感应用   总被引:2,自引:0,他引:2  
阐述了光纤Bragg光栅(FBG)与长周期光纤光栅(LPFG)的常用制作方法、原理、特性,并对它们进行了比较,介绍了目前国内外光纤光栅的最新应用,特别是在传感领域的新应用。对今后的研究方向做了预测,适合于不同用途光纤光栅的写入技术有待于进一步提高,通过减小包层直径来改变光纤光栅特性的方法有待于进一步研究和利用,在折射率传感领域光纤光栅会有更广阔的天地。  相似文献   

4.
光纤Bragg 光栅的谐振传感实验研究   总被引:7,自引:1,他引:7  
利用微悬臂梁对光纤Bragg光栅的振动传感特性进行了实验研究,其频率传感范围达到2.5kHz,并给出了实验拟合曲线。研究表明:光纤Bragg光栅反射波长漂移的扫描平均值△λ对微悬臂梁的谐振频率υn响应灵敏。  相似文献   

5.
光纤Bragg光栅传感网络实时监测与应变分析   总被引:2,自引:2,他引:2  
作为一种绝对式传感器,波长调制式光纤Bragg光栅传感器对应变的响应为0.9pm/??。开发了基于可调谐F-P滤波器的检测仪器与计算机系统之间的实时监测系统。在对白泥井3号隧道的监测过程中,该光纤Bragg光栅传感网络实时监测系统实现了对来自隧道结构的应变状态的实时采集和描绘,并可以存储波长和应变数据以便后期查寻分析;借助分析光纤Bragg光栅传感器的应变图、三维应变图,为判断隧道二次衬砌的受力趋向提供参考。  相似文献   

6.
阐述了由耦合模理论得到的光纤Bragg光栅的反射率的表达式 ,并且由此表达式导出了光纤Bragg光栅的反射特性 ,反射中心波长为λB=2 ·neff·Λ。进而理论分析了反射波长λ、光栅栅距Λ ,折射率微扰的最大值Δnmax、光栅区长度L和反射率Rg 之间的关系。  相似文献   

7.
光纤Bragg光栅折射率调制特性研究   总被引:1,自引:0,他引:1  
在光纤Bragg光栅(FBG)中两个正反向模式之间会发生耦合,要了解光纤光栅的物理特性,提高反射率的精度,就需要深入研究光纤光栅的耦合模理论.通过光纤Bragg光栅的耦合方程,研究在不同的折射率调制深度的情况之下光纤反射谱变化,并用Matlab做仿真实验,结果发现光栅长度取2,5,10 mm,弱光栅、中度光栅、强光栅在折射率变化0.000 1时的反射谱带宽最大值分别是2.015 0×10-11,5.276 7×10-11,9.2143 ×10-11.计算表明:在固定光栅长度情况下,每0.000 1折射率变化所导致的反射谱带宽变化值在任意反射带中都相对稳定,其中,弱光栅反射谱最小,中度光栅反射谱次之,强光栅反射谱最大.  相似文献   

8.
双光纤光栅可以用于光纤光栅传感器中波长移动的探测与解调,提出了一种新的解调方案并对几种可能的解调方案进行了实验对比。结果表明,在宽带光源光谱全功率较小的前提下,利用双光栅透射谱的相关及双光栅透射谱和反射谱的卷积都能实现波长移动的探测与解调,前者有更好的信噪比。而因为系统损耗过大,利用双光栅反射谱的相关不能探测与解调光栅中心反射波长的移动。双光栅波长探测与解调技术将波长的移动转化为相对光强极值的探测,避免了光纤光栅传感器中使用光谱仪等价格昂贵,体积庞大,使用不方便的光谱探测器件,有利于光纤光栅传感器的实用化。  相似文献   

9.
风向仪能够测出风向变化,进而调整风机跟随风向变化进行高质量发电,从而降低成本。采用风向标结构,风向标转轮上设置方向凸轮和角度凸轮,风向标主体与粘贴有光纤Bragg光栅( FBG)的等悬臂梁固定在底座上。风向标转轮受风力作用旋转,带动方向凸轮和角度凸轮,等强度悬臂梁受凸轮撞击产生挠度变化,导致粘贴其上的FBG波长移位,根据搭建的数学模型,由波长移位量可得出风向标旋转角度即风向。通过对FBG风向仪的风洞实验的数据分析得出:起动风速为1.2 m/s,非线性误差为7.92% FS,灵敏度为1.47 pm /(°),重复性误差为6.03% FS。  相似文献   

10.
为了提高光纤Bragg光栅(FBG)解调系统的波长解调精度,满足实际中高精度测量的需要,提出基于F-P可调谐滤波器和波长基准器,采用相关谱法和线性插值法相结合的处理技术。该方法不但可以有效地抑制噪声,而且,可以精确地检测波长漂移量。实验表明:采用此方法可使Bragg光栅波长分辨力和解调精度相对于传统的峰值检测法有很大提高,波长分辨力达到1 pm,温度测量精度达到±0.2℃。  相似文献   

11.
通过传统流量测量元件的原理、技术和传感结构的研究,在设计中采用了光纤Bragg光栅作为传感元件并选用了靶式传感结构。利用靶式流量计中靶片受力与液体流速成一定函数关系,研制了一种轴封膜片结构的光纤Bragg光栅靶式流量传感器。建立了加载在靶板处的载荷量与该光纤Bragg光栅靶式流量传感器的Bragg波长移位值关系的传感模型;计算出该传感器的理论灵敏度为18pm/Kg;理论分辨率为0.055Kg/pm。并通过砝码干校法实验,测量出了传感器的实际灵敏度16.7pm/Kg,实际分辨率为0.06pm/Kg。  相似文献   

12.
利用光纤光栅(Fiber Bragg grating,简称FBG)、超磁致伸缩材料(Giant magnetostriction material,简称GMM)和基于双芯光纤滤波器的解调系统实现了交流电流的测量。在介绍超磁致伸缩材料的磁致伸缩效应、光纤光栅检测电流原理以及双芯光纤滤波器解调原理的基础上,借助超磁致伸缩材料和光纤光栅等构建了电流测量单元。利用设计的电流测量单元,在施加0~4.5A(50Hz)范围的交流激励电流时,经基于双芯光纤滤波器的解调系统解调,验证了采用该方案检测电流的可行性。  相似文献   

13.
提出并实现了一种基于FFP可调滤波器的FBG解调系统.该系统通过PC104嵌入式系统控制的D/A输出信号,作为可调滤波器的控制信号,对光纤上的所有光栅连续扫描以实现波长信号的解调.该解调系统扫描带宽50 nm,以10 Hz频率进行扫描,可以得到稳定的测量信号.  相似文献   

14.
基于DSP的光纤布拉格光栅波长解调系统   总被引:1,自引:1,他引:0  
波长解调技术是光纤布拉格光栅在温度、应变测量等领域应用的关键技术,提出并实现了一种基于可调谐Fabry-Perot滤波器的波长解调系统设计方案.系统使用扫描控制信号作用于可调谐Fabry-Perot滤波器,DSP对扫描控制电压和布拉格光栅的反射波峰进行采样与处理,通过标准具和参考光栅对Fabry-Perot滤波器进行标定,使用数字滤波提高了数据的稳定性和分辨率.实验表明,该系统的解调效果很好,在结构简单的基础上能取得较好的精度与分辨率.  相似文献   

15.
光纤Bragg光栅流量传感器   总被引:4,自引:1,他引:4  
采用靶式结构作为光纤Bragg光栅流量传感器的换能元件,其中两片光栅分别粘贴于等强度悬臂梁的上下两表面。采用双光栅粘贴方式对传感器进行温度补偿,有效的解决了应变与温度交叉敏感的问题,提高了测量灵敏度。实验表明该靶式光纤Bragg光栅流量传感器的载荷响应灵敏度为33.6pm/kg,测量精度为0.5%。  相似文献   

16.
光纤光栅温度传感器   总被引:8,自引:1,他引:8  
本文提出了一种新型的光纤光栅温度传感方案,利用微机控制光纤激光器波长扫描寻址方法实现了传感信号的解调。理论上分析了系统的响应特性,并同实验结果进行了比较。  相似文献   

17.
大应变光纤Bragg光栅传感器的研究   总被引:1,自引:0,他引:1  
在通信光纤的长期允许应变为3000 με的基础上,研制了一种测量应变范围为0~6000 με的大应变光纤Bragg光栅传感器.在外加应力的作用下,固定支点的相对位置发生变化,从而带动应变管发生轴向形变,导致了粘贴在调节管两端的光纤Bragg光栅按比例产生了Bragg波长移位.通过荷载,对大应变光纤Bragg光栅传感器进...  相似文献   

18.
针对光纤光栅传感系统应用中面临的应变弱和可靠性不稳定等问题,研究并设计了一种基于自适应耦合切换和自调谐光纤光栅传感系统;主要从事首先,基于光纤光栅的波长边化特点和多耦合特性设计了自适应耦合功能器件,并依据波长交叉点特性建立了长-短周期切换算法,然后考虑了波长对工作电压和耦合周期的影响特点,设计了支持自调谐功能的光纤光栅传感器及其调谐算法,最后给出了具有自适应多耦合切换和自调谐功能的光纤光栅传感系统;主要从事实验表明,在检测精度、抗干涉能力和应变能力等方面,所提方案表现出了明显优势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号