首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
This paper is concerned with the stochastic stability and passivity analysis for a class of Lur’e singular systems with time-varying delay and Markovian switching. By using the free-weighting matrices approach, a delay-dependent stability criterion, which guarantees that the system is stochastically stable and robustly passive, is derived in terms of linear matrix inequality (LMI). Two numerical examples are provided to illustrate the effectiveness of the proposed method.  相似文献   

2.
3.
This paper investigates the problem of delay-dependent robust stabilization for uncertain singular systems with discrete and distributed delays in terms of linear matrix inequality (LMI) approach. Based on a delay-dependent stability condition for the nominal system, a state feedback controller is designed, which guarantees the resultant closed- loop system to be robustly stable. An explicit expression for the desired controller is also given by solving a set of matrix inequalities. Some numerical examples are provided to illustrate the less conservativeness of the proposed methods.  相似文献   

4.
In this paper, we investigate a decentralized stabilization problem of uncertain multi-agent systems with mixed delays including discrete and distributed time-varying delays based on passivity stability. We design a decentralized state-feedback stabilization scheme such that the family of closed-loop feedback subsystems enjoys the delay-dependent passivity stability for each subsystem. Then, by employing a new Lyapunov-Krasovskii function, a linear matrix inequality (LMI) approach is developed to establish the delay-dependent criteria for the passivity stability of multi-agent systems. The sufficient condition is given for checking the passivity stability. The proposed LMI result is computationally efficient. An example is given to show the effectiveness of the method.  相似文献   

5.
This paper presents delay-dependent stability analysis and controller synthesis methods for discrete-time Takagi-Sugeno (T-S) fuzzy systems with time delays. The T-S fuzzy system is transformed to an equivalent switching fuzzy system. Consequently, the delay-dependent stabilization criteria are derived for the switching fuzzy system based on the piecewise Lyapunov function. The proposed conditions are given in terms of linear matrix inequalities (LMIs). The interactions among the fuzzy subsystems are considered in each subregion, and accordingly the proposed conditions are less conservative than the previous results. Since only a set of LMIs is involved, the controller design is quite simple and numerically tractable. Finally, a design example is given to show the validity of the proposed method.  相似文献   

6.
7.
The problem of stability for singular systems with two additive time-varying delay components is investigated. By constructing a simple type of Lyapunov-Krasovskii functional and utilizing free matrix variables in approximating certain integral quadratic terms, a delay-dependent stability criterion is established for the considered systems to be regular, impulse free, and stable in terms of linear matrix inequalities (LMIs). Based on this criterion, some new stability conditions for singular systems with a single delay in a range and regular systems with two additive time-varying delay components are proposed. These developed results have advantages over some previous ones in that they have fewer matrix variables yet less conservatism. Finally, two numerical examples are employed to illustrate the effectiveness of the obtained theoretical results.  相似文献   

8.
In this paper, delay-dependent robust stability for a class of uncertain networked control systems (NCSs) with multiple state time-delays is investigated. Modeling of multi-input and multi-output (MIMO) NCSs with networkinduced delays and uncertainties through new methods are proposed. Some new stability criteria in terms of LMIs are derived by using Lyapunov stability theory combined with linear matrix inequalities (LMIs) techniques. We analyze the delay-dependent asymptotic stability and obtain maximum allowable delay bound (MADB) for the NCSs with the proposed methods. Compared with the reported results, the proposed results obtain a much less conservative MADB which are more general. Numerical example and simulation is used to illustrate the effectiveness of the proposed methods.  相似文献   

9.
This paper deals with the delay-dependent stabilization problem for singular systems with Markovian jump parameters and time delays. A delay-dependent condition is established for the considered system to be regular, impulse free and stochastically stable. Based on the condition, a design algorithm of the desired state feedback controller which guarantees the resultant closed-loop system to be regular, impulse free and stochastically stable is proposed in terms of a set of strict linear matrix inequalities (LMIs). Numerical examples show the effectiveness of the proposed methods.  相似文献   

10.
This paper deals with the global asymptotic stability problem for Hopfield neural networks with time-varying delays. By resorting to the integral inequality and constructing a Lyapunov-Krasovskii functional, a novel delay-dependent condition is established to guarantee the existence and global asymptotic stability of the unique equilibrium point for a given delayed Hopfield neural network. This criterion is expressed in terms of linear matrix inequalities (LMIs), which can be easily checked by utilizing the recently developed algorithms for solving LMIs. Examples are provided to demonstrate the effectiveness and reduced conservatism of the proposed condition.  相似文献   

11.
In this paper, the problem of passivity analysis is investigated for a class of stochastic delayed neural networks with Markovian switching. By applying Lyapunov functional and free-weighting matrix, delay-dependent/independent passivity criteria are presented in terms of linear matrix inequalities. The results herein include existing ones for neural networks without Markovian switching as special cases. An example is given to demonstrate the effectiveness of the proposed criteria.  相似文献   

12.
On delay-dependent passivity   总被引:2,自引:0,他引:2  
  相似文献   

13.
This paper is concerned with delay-dependent passivity analysis for interval neural networks with time-varying delay. By decomposing the delay interval into multiple equidistant subintervals, new Lyapunov-Krasovskii functionals (LKFs) are constructed on these intervals. Employing these new LKFs, a new passivity criterion is proposed in terms of linear matrix inequalities, which is dependent on the size of the time delay. Finally, some numerical examples are given to illustrate the effectiveness of the developed techniques.  相似文献   

14.
《国际计算机数学杂志》2012,89(9):1782-1795
Novel passivity criteria are presented for the passivity of a class of cellular neural networks with discrete and unbounded distributed time-varying delays. Two types of uncertainty are considered: one is time-varying structured uncertainty while the other is interval uncertainty. The Gu's discretized Lyapunov–Krasovskii functional method is integrated with the technique of introducing the free-weighting matrix between the terms of the Leibniz–Newton formula. The integrated method leads to the establishment of new delay-dependent sufficient conditions in form of linear matrix inequalities for passivity of delayed neural networks. A numerical simulation study is conducted to demonstrate the obtained theoretical results, which shows their less conservatism than the existing passivity criteria.  相似文献   

15.
This paper discusses the issue of dissipativity and passivity analysis for a class of impulsive neural networks with both Markovian jump parameters and mixed time delays. The jumping parameters are modelled as a continuous-time discrete-state Markov chain. Based on a multiple integral inequality technique, a novel delay-dependent dissipativity criterion is established via a suitable Lyapunov functional involving the multiple integral terms. The proposed dissipativity and passivity conditions for the impulsive neural networks are represented by means of linear matrix inequalities. Finally, three numerical examples are given to show the effectiveness of the proposed criteria.  相似文献   

16.
This paper is concerned with delay-dependent passivity analysis for delayed neural networks (DNNs) of neutral type. We first discuss the passivity conditions for DNNs without uncertainties and then extend this result to the case of interval uncertainties. By partitioning the delay intervals into multiple equidistant subintervals, some appropriate Lyapunov-Krasovskii functionals (LKFs) are constructed on these intervals. Considering these new LKFs and using free-weighting matrix approach, several new passivity criteria are proposed in terms of linear matrix inequalities, which are dependent on the size of the time delay. Finally, five numerical examples are given to illustrate the effectiveness and less conservatism of the developed techniques.  相似文献   

17.
Passivity analysis for neural networks with a time-varying delay   总被引:1,自引:0,他引:1  
This paper deals with the problem of passivity analysis for neural networks with both time-varying delay and norm-bounded parameter uncertainties by employing an improved free-weighting matrix approach. Some useful terms have been retained, which were used to be ignored in the derivative of Lyapunov-Krasovskii functional. Furthermore, the relationship among the time-varying delay, its upper bound and their difference is taken into account. As a result, for two types of time-varying delays, less conservative delay-dependent passivity conditions are obtained in terms of linear matrix inequalities (LMIs), respectively. Finally, a numerical example is given to demonstrate the effectiveness of the proposed techniques.  相似文献   

18.
In this paper, the passivity problem is investigated for a class of uncertain neural networks with generalized activation functions. By employing an appropriate Lyapunov–Krasovskii functional, a new delay-dependent criterion for the passivity of the addressed neural networks is established in terms of linear matrix inequalities (LMIs), which can be checked numerically using the effective LMI toolbox in MATLAB. An example is given to show the effectiveness and less conservatism of the proposed criterion. It is noteworthy that the traditional assumptions on the differentiability of the time-varying delays and the boundedness of its derivative are removed.  相似文献   

19.
不确定离散广义系统的时滞相关非脆弱无源控制   总被引:3,自引:0,他引:3  
针对不确定离散时滞广义系统,研究其时滞相关鲁棒严格无源、渐近稳定性以及相关的非脆弱控制问题.首先利用线性矩阵不等式(LMI)和自由权矩阵的概念,分析了离散广义系统时滞相关严格无源以及渐近稳定性的条件;然后讨论不确定离散广义系统的时滞相关鲁棒严格无源和渐近稳定性,并讨论具有加性非脆弱反馈控制设计使得闭环系统满足相应性能,同时给出控制器的构造方法;最后通过数值算例说明该方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号