共查询到20条相似文献,搜索用时 62 毫秒
1.
首先定义了贝叶斯网(BN)分解的相关概念,提出了基于遗传算法的BN分解算法(BDGA),给出了BDGA算法的编码和适应度函数的表示方法,设计了BDGA算法的选择、交叉、变异算子,并得到不同种群大小情况下四个贝叶斯网Medianus Ⅰ、MedianusⅡ、Sparse和Dense的分解结果.结果表明BDGA能有效搜索全局最优的BN分解结构,在和Kjaerulff综合的采用10种算法分解这四种贝叶斯网的结果相比,BDGA算法超过10种算法的9个,和模拟退火算法具有同样好的结果.BDGA算法能实现准确求解BN的分解结构,为实现BN的联合树结构上的推理奠定了基础. 相似文献
2.
贝叶斯网用一种紧凑的形式表示联合概率分布,具有完备的语义和坚实的理论基础,目前已成为人工智能领域处理不确定性问题的最佳方法之一。贝叶斯网学习是其关键问题,传统学习方法存在如下不足:(1)随节点数增多非法结构以指数级增加,影响学习效率;(2)在等价结构之间进行打分搜索,影响收敛速度;(3)假设每个结构具有相同的先验概率,造成等价类中包含结构越多则先验概率越高。本文提出一种学习马尔科夫等价类算法,该算法基于骨架空间进行状态转换,利用从骨架空间到等价类空间的映 映射关系实现学习贝叶斯网等价类。实验数据证明,该方法可有效缩小搜索空间规模,相对于在有向图空间搜索的算法加快了算法的收敛速度,提高了执行效率。 相似文献
3.
贝叶斯网学习算法模型及参数学习算法 总被引:1,自引:0,他引:1
1 引言近年来,贝叶斯网(又称随机信息网)作为处理人工智能中不确定性问题的建模工具受到学术界的广泛关注,并成功地应用在医学诊断、模式识别、故障诊断各个方面。作为一种有向图表示的建模方法,贝叶斯网由于其表达方式自然、紧凑,深受知识工程师喜受,已广泛地用于知识获取和表示。但是,利用专家知识构造贝叶斯网是一件烦琐的工作,特别是网络节点数很大时更是这样。因此,利用数据例子,通过学习自动生成贝叶斯网的方法日益受到重视,有一些学习 相似文献
4.
5.
采用遗传算法建立贝叶斯网络的优化学习结构,一直是贝叶斯网络研究倍受关注的课题.传统遗传算法的个体设计存在需要反复进行无环性检验的问题,降低了进化效率.针对这个问题,提出一种新的个体编码方式.考虑到进化过程中家族得分的可继承性,提出基于家族继承的结构评分改进算法,进而设计相应的改进遗传算法.实验结果表明,改进算法在BN建网精度与效率上都得到明显提升. 相似文献
6.
贝叶斯网是处理不确定性问题知识表示和推理的最重要的理论模型之一,其结构学习是目前研究的一个热点。提出了一种基于拓扑序列和量子遗传算法的贝叶斯网结构学习算法,新算法首先利用量子信息的丰富性和量子计算的并行性,设计出基于量子染色体的拓扑序列生成策略提高了搜索效率,并为K2算法学得高质量的贝叶斯网结构提供了保障;然后采用带上下界的自适应量子变异策略,增强了种群的多样性,提高了算法的搜索能力。实验结果表明,与已有的一些算法相比,新算法不仅能获得较高质量的解,而且还有着较快的收敛速度。 相似文献
7.
基于无约束优化和遗传算法,提出一种学习贝叶斯网络结构的限制型遗传算法.首先构造一无约束优化问题,其最优解对应一个无向图.在无向图的基础上,产生遗传算法的初始种群,并使用遗传算法中的选择、交叉和变异算子学习得到最优贝叶斯网络结构.由于产生初始种群的空间是由一些最优贝叶斯网络结构的候选边构成,初始种群具有很好的性质.与直接使用遗传算法学习贝叶斯网络结构的效率相比,该方法的学习效率相对较高. 相似文献
8.
基于遗传算法和强化学习的贝叶斯网络结构学习算法 总被引:1,自引:0,他引:1
遗传算法是基于自然界中生物遗传规律的适应性原则对问题解空间进行搜寻和最优化的方法。贝叶斯网络是对不确定性知识进行建模、推理的主要方法,Bayesian网中的学习问题(参数学习与结构学习)是个NP-hard问题。强化学习是利用新顺序数据来更新学习结果的在线学习方法。介绍了利用强化学习指导遗传算法,实现对贝叶斯网结构进行有效学习。 相似文献
9.
贝叶斯网结构学习是一个NP难题,提高学习效率是重要研究问题之一。贝叶斯网结构空间的规模随节点(随机变量)数呈指数增加,选择适当的结构空间可以提高学习效率。本文对贝叶斯网结构空间进行定性和定量分析,对比有向图空间、贝叶斯网空间和马尔科夫等价类空间的规模和特点。通过实验数据分析先验结构空间约束对降低结构空间规模的效率,给出约束参数的选择区间。为贝叶斯网结构学习选择搜索空间和确定约束参数提供理论支持,从而提高学习效率。 相似文献
10.
11.
12.
13.
14.
15.
16.
传统的旅行商问题都是静态的,但在现实中许多问题是动态的。该文提出动态旅行商问题,问题的规模随时间不断变化。实时问题对算法的求解效率要求很高,为此设计了基于模糊规则的在线遗传算法,可以根据求解问题的变化,在线精炼模糊控制规则来控制算法的参数。仿真实验验证了算法的有效性。 相似文献
17.
分布式实时多媒体的大量应用对能有效支持服务质量(QoS)的组播路由算法提出了迫切的要求,由于其NP-Complete特性,只能采用启发式算法。该文提出了一种基于PBIL(Population-BasedIncrementalLearning)进化算法的时延受限组播路由算法,该算法有效结合了遗传算法的进化特性与竞争学习算法的特点,实施简单,仿真表明它不但显著提高了收敛速度,而且能以较大概率收敛到最优解。 相似文献
18.
19.
混合GP-GA用于信息系统建模预测的研究 总被引:10,自引:1,他引:10
该文克服了传统建模方法在模型选取及参数估计方面的困难与不足,提出了利用改进的遗传程序设计和改进的遗传算法相结合的混合GP-GA算法。一方面,遗传程序设计中加入了简约压力项,控制了代码过度增长,实现了不加先验知识的简洁非线性模型的自动获取。另一方面,遗传算法采用Gray编码,随机整群抽样选择,以优化模型中的参数,这在一定程度上补偿了遗传程序设计在演化过程中具有较好结构的模型可能因为其中的参数未能达到最优而被淘汰的损失。仿真实例和实际应用均表明混合GP-GA算法优于普通的回归分析及单纯的遗传程序设计方法,提高了拟合和预测精度,并且更适合反映问题的实际情况。 相似文献
20.