首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 429 毫秒
1.
几何约束求解与复杂连杆机构的模拟   总被引:8,自引:2,他引:8  
提出几何约束求解的轨迹相交法.该方法理论上可以给出约束问题的所有数值解,实际调试效率也相当高,并将该方法用于复杂连杆机构的动态模拟.首先用图论中的最大b-匹配算法将一个连杆机构分解为广义构造序列,然后用轨迹相交法求解.据此还可以给出连杆机构的最优驱动构件的选择.  相似文献   

2.
针对过约束、完整约束和欠约束三维几何约束系统的求解问题,提出了等价性分析方法.该方法基于三维几何约束系统的内在等价性,充分挖掘几何领域知识,依据拆解约束闭环、缩减约束闭环和析出约束闭环等原则,采用等价约束替换来处理几何约束闭环问题,优化几何约束图的结构,实现几何约束系统的优化分解.最后用多个实例验证了该方法的正确性和有...  相似文献   

3.
基于几何约束求解的完备方法   总被引:2,自引:0,他引:2  
针对参数化CAD在约束求解中的应用,提出了基于智能连杆的算法,该算法在扩充几何作图范围、改善算法复杂度方面都有明显的优势.将其同LIMO算法、几何变换方法、C-Tree算法、数值求解方法等方法相互融合,能够组成一套非常完备的几何约束求解框架,来完成对平面和空间几何约束问题的自动求解与图像生成.将该算法应用于智能动态几何软件的设计中,实验显示可以取得令人满意的结果.  相似文献   

4.
In this paper, we propose a method which can be used to decompose a 2D or 3D constraint problem into a C-tree. With this decomposition, a geometric constraint problem can be reduced into basic merge patterns, which are the smallest problems we need to solve in order to solve the original problem in certain sense. Based on the C-tree decomposition algorithm, we implemented a software package MMP/Geometer. Experimental results show that MMP/Geometer finds the smallest decomposition for all the testing examples efficiently.  相似文献   

5.
以基本几何约束组合统一表达装配约束,为提高求解效率,研究了姿态约束和位置约束的可解耦情况下位置约束的解析求解.将基本位置约束映射为移动空间并以参数方程表达,通过移动空间的增量解析求交,满足约束;在姿态约束和位置约束的不可解耦情况,联立基本约束进行整体数值法求解.文中方法保持了基本约束表达的独立性,适合于欠约束系统和完整约束系统.  相似文献   

6.
Solving geometric constraint systems in 3-D is much more complicated than that in 2-D because the number of variables is larger and some of the results valid in 2-D cannot be extended for 3-D. In this paper, we propose a new DOF-based graph constructive method to geometric constraint systems solving that can efficiently handle well-, over- and under-constrained systems based on the dependence analysis. The basic idea is that the solutions of some geometric elements depend on some others because of the constraints between them. If some geometric elements depend on each other, they must be solved together. In our approach, we first identify all structurally redundant constraints, then we add some constraints to well constrain the system. And we prove that the order of a constraint system after processing under-constrained cases is not more than that of the original system multiplied by 5. After that, we apply a recursive searching process to identify all the clusters, which is shown to be capable of getting the minimum order-reduction result of a well-constrained system. We also briefly describe the constraint evaluation phase and show the implementation results of our method.  相似文献   

7.
一种基于图分解的几何约束求解方法   总被引:1,自引:0,他引:1       下载免费PDF全文
为了提高几何约束求解的效率和鲁棒性 ,对基于图的构造方法进行了改进 ,即加入虚约束进行扩展和过约束问题的一致性判定 ,提出了一种基于图分解的方法 ,用此方法可以处理包括完全约束、过约束和欠约束等多种情况的约束求解问题 ,另外 ,在该方法中还通过引入分解树将约束求解的范围由整体下降到局部 ,使大部分求解过程能够采用几何求解实现 ,提高了求解和后续修改的效率 ,通过实验数据测试证明 ,该方法对于大型约束求解问题可以达到实时处理的效果 ,具有较强的实用性  相似文献   

8.
几何约束求解是CAD建模中的关键技术。针对求解质量不高和求解速度慢的问题,进行了研究。提出了一种鱼群算法和混沌算法相结合的几何约束求解方法。首先,将CAD模型中的几何约束关系表示为一组代数方程组;然后,利用代数方程组来构造目标函数。将几何约束求解问题转换为目标函数的优化问题。最后,使用混沌算法来改进鱼群算法以寻找目标函数的最优解。实验结果表明:该方法可以有效地解决几何约束问题。  相似文献   

9.
This paper addresses some important issues for multibody dynamics; issues that are basic and really not too difficult to solve, but rarely considered in the literature. The aim of this paper is to contribute to the resolution and clarification of these topics in multibody dynamics. There are many formulations for determining the equations of motion in constrained multibody systems. This paper will focus on three of the most important methods: the Lagrange equations of the first kind, the null space method and the Maggi equations. In all cases we consider singular inertia matrices and redundant constraint equations. We assume that the inertia matrix is positive-semidefinite (symmetric) and that the constraint equations may be redundant but always consistent. It is demonstrated that the aforementioned dynamic formulations lead to the same three mathematical conditions of existence and uniqueness of solutions, conditions that have at the same time a clear physical meaning. We conclude that the mathematical problem always has a solution if the physical problem is well conditioned. This paper also addresses the problem of determining the constraint forces in the case of redundant constraints. This problem is examined from a broad perspective. We will present several examples and a simple method to find practical solutions in cases where the forces of constraint are undetermined. The method is based on the weighted minimum norm condition. A physical interpretation of this minimum norm condition is provided in detail for all examples. In some cases a comparison with the results obtained by considering flexibility is included.  相似文献   

10.
General constructive geometric constraint solvers are pre-processed by a degree-of-freedom analysis, which enables efficient graph decomposition and recombination. However, all these methods are based on the assumption that structural rigidity automatically assures solvability. In this paper, we show that this assumption fails in numerous, even the most basic, configurations. We introduce several simple but efficient rules aimed to additionally analyse solvability in such cases. Another novelty addresses conditional constraints between three or more geometric parts, rules for their simplification and a redundancy check. All these functionalities are built into our original 2D geometric constraint solver, based on concepts of rigid clusters and constrained-angle (CA) sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号