首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 177 毫秒
1.
We investigated the effects of low frequency whole body vibration on heart rate variability (HRV), a measure of autonomic nervous system activation that differentiates between stress and drowsiness. Fifteen participants underwent two simulated driving tasks for 60?min each: one involved whole-body 4–7?Hz vibration delivered through the car seat, and one involved no vibration. The Karolinska Sleepiness Scale (KSS), a subjective measure of drowsiness, demonstrated a significant increase in drowsiness during the task. Within 15–30?min of exposure to vibration, autonomic (sympathetic) activity increased (p?p?Practitioner summary: The effects of physical vibration on driver drowsiness have not been well investigated. This laboratory-controlled study found characteristic changes in heart rate variability (HRV) domains that indicated progressively increasing neurological effort in maintaining alertness in response to low frequency vibration, which becomes significant within 30?min.

Abbreviations: ANS: autonomic nervous system; Ctrl: control; EEG: electroencephalography; HF: the power in high frequency range (0.15 Hz-0.4Hz) in the PSD relected parasympathetic activity only; HRV: heart rate variability; KSS: karolinska sleepiness scale; LF: the power in low frequency range (0.04 Hz-0.15Hz) in the PSD reflected both sympathetic and parasympathetic activity of the autonomic nervous system; LF/HF ratio: the ratio of LF to HF indicated the balance between sympathetic and parasympathetic activity; RMSSD: the root mean square of difference of adjacent RR interval; pNN50: the number of successive RR interval pairs that differed by more than 50 ms divided by the total number of RR intervals; RR interval: the differences between successive R-wave occurrence times; PSD: power spectral density; RTP: research training program; SD: standard deviation; SEM: standard error of the Mean; Vib: vibration  相似文献   

2.
A unique textile-based device, the intelligent knee sleeve (IKS), uses conducting polymer technology to provide feedback on knee flexion angle for injury prevention programs. After identifying the most appropriate base fabric for the sensor, 12 athletes (age = 26.1 ± 3.2 years) performed four landing movements while wearing the sleeve, which was set to provide audible feedback at 25° and 45° knee flexion. Sensor and audible output (1000 Hz), knee kinematics (200 Hz) and ground reaction forces (1000 Hz) were recorded during the landing movements using an OPTOTRAK® motion analysis system. Paired t-tests and intraclass correlation coefficients were used to determine validity and reliability of the feedback. The results revealed that the audible feedback tone was able to significantly differentiate between different goniometer-programmed knee angles (25° and 45°). Knee angles computed using the kinematic data from each trial for each movement were also highly reliable (intraclass correlation coefficients, R1 = 0.903–0.988). It was concluded that although the IKS provides valid and reliable feedback on knee flexion angle, consistent feedback is dependent upon use of a sensor unaffected by environmental conditions. Such wearable biofeedback systems have application in a broad spectrum of activities, including performance enhancement, injury prevention and rehabilitation.  相似文献   

3.
A surface acoustic wave (SAW)-based high-voltage sensor is described. The sensor consists of a SAW oscillator fabricated on a 10 mm × 10 mm 128° rotated Y-cut, X-propagating LiNbO3 substrate. The voltage is applied to electrodes on the substrate, and the resulting electric field changes the propagation time of the SAW. The propagation time is directly related to the output frequency of the SAW oscillator. The high-voltage sensor offers a small-sized high-voltage measurement device with several attractive features: a high resolution (better than 0.2 V up to 2.4 kV, better than 0.4 V for higher voltages), a large range (−10 to +10 kV), a high input impedance (> 1013 ω) and a low input capacitance (< 10 pF). The sensitivity amounts to 16 Hz V−1.  相似文献   

4.
The possibility of developing a simple, inexpensive and specific personal passive “real-time” air sampler incorporating a biosensor for formic acid was investigated. The sensor is based on the enzymatic reaction between formic acid and formate dehydrogenase (FDH) with nicotinamide adenine dinucleotide (NAD+) as a co-factor and Meldola's blue as mediator. An effective way to immobilise the enzyme, co-factor and Meldola's blue on screen-printed, disposable, electrodes was found to be in a mixture of glycerol and phosphate buffer covered with a gas-permeable membrane. Steady-state current was reached after 4–15 min and the limit of detection was calculated to be below 1 mg/m3. However, the response decreased by 50% after storage at −15°C for 1 day.  相似文献   

5.
The performance of a single-wafer fabricated silicon condenser microphone has been improved by increasing the stress and the acoustic hole density of the backplate and by decreasing the diaphragm thickness. The best microphones show a sensitivity of 5.0 mV Pa−1, which corresponds to an open-circuit sensitivity of 10 mV Pa−1 for a microphone capacitance of 6.6 pF. The measured frequency response is flat within ±2 dB from 100 Hz to 14 kHz, which is better than the requirements for a hearing-aid microphone. The operating voltage of these microphones is only 5.0 V, which is about 60% of the collapse voltage. The measured noise level of the microphones is 30 dBA SPL, which is approximately as low as required for a hearing-aid microphone ( <29.5 dBA SPL).  相似文献   

6.
Vanadium dioxide (VO2) thin films are materials for uncooled microbolometer due to their high temperature coefficient of resistance (TCR) at room temperature. This paper describes the design and fabrication of eight-element uncooled microbolometer linear array using the films and micromachining technology. The characteristics of the array is investigated in the spectral region of 8–12 μm. The fabricated detectors exhibit responsivity of over 10 kV/W, detectivity of approximate 1.94×108 cm Hz1/2/W, and thermal time constant of 11 ms, at 300 K and at a frequency of 30 Hz. Furthermore, the uncorrected response uniformity of the linear array bolometers is less than 20%.  相似文献   

7.
The results of parametric studies to assess the effects of various parameters on the buckling behavior of angle-ply, laminated thin shells in a hot environment are presented in this paper. These results were obtained by using a three-dimensional finite element analysis. An angle-ply, laminated thin shell with fiber orientation of [θ/ −θ]2 was subjected to compressive mechanical loads. The laminated thin shell has a cylindrical geometry. The laminate contained T300 graphite fibers embedded in an intermediate-modulus, high-strength (IMHS) matrix. The fiber volume fraction was 55% and the moisture content was 2%. The residual stresses induced into the laminated structure during the curing were taken into account. Parametric studies were performed to examine the effect on the critical buckling load of the following parameters: cylinder length and thickness, internal hydrostatic pressure, different ply thicknesses, different temperature profiles through the thickness of the structure, and different layup configurations and fiber volume fractions. In conjunction with these parameters the ply orientation varied from 0° to 90°. Seven ply angles were examined: 0°, 15°, 30°, 45°, 60°, 75°, and 90°. The results show that the ply angle θ and the laminate thickness had significant effects on the critical buckling load. The fiber volume fraction and the internal hydrostatic pressure had important effects on the critical buckling load. The cylinder length had a moderate influence on the buckling load. The thin shell with [θ/−θ]2 or [θ/−θ]s angle-ply laminate had better buckling-load performance than the thin shell with [θ]4 off-axis laminate. The temperature profiles through the laminate thickness and various laminates with the same thickness but with the different ply thickness had insignificant effects on the buckling behavior of the thin shells.  相似文献   

8.
O.  R.  F.M.  L.A.  J.L.   《Sensors and actuators. A, Physical》2005,120(2):490-493
A sensing head for simultaneous measurement of temperature and strain is presented and analyzed. The proposed configuration is based on the combination of two Bragg gratings, written in different fibres and with different reflectivities, to form a single signature with a reflected step spectrum profile. This characteristic minimizes the spectrum allocated to each sensor in a series multiplexing topology. By measuring the changes in the peak wavelength and spectral width of this signature, resolutions of ±0.65 °C/√Hz and ±2.55 μ/√Hz were achieved for temperature and strain measurements, respectively.  相似文献   

9.
A study on maximum acceptable weight limit (MAWL) was conducted on ten adult Indian female building construction workers (CW) and eight household workers (HW), following the psychophysical methodology. All these workers were in the age group of 28–32 years. In this study, three different body heights (i.e. knee, waist and maximum reach) in sagittal plane were considered. The lifting frequency was fixed at 1 lift min−1. The subjects were instructed to lift the load from the ground. Each set of experiments was conducted for 45 min work period using free-style lifting technique. Subjects were using a load container with no handle, which is typically used in the field. Both the working heart rates (WHR) and pause heart rates (with 4.4 s interval) were collected for the entire duration. The subjects were requested to rate their perceived exertion level after each load adjustment. The average MAWL working heart rates of CW group are 106.2(±8.3), 108.7(±9.3) and 106.8(±11.0) beats min−1 for knee, waist and maximum reach heights, where the load levels were estimated as 18.2(±0.8), 17.4(±1.4) and 16.3(±1.2) kg, respectively. For HW group, the MAWL working heart rates obtained were 101.3(±8.0), 99.6(±6.2) and 105.2(±6.1) beats min−1 for knee, waist and maximum reach heights and the corresponding load levels were 15.4(±0.5), 14.4(±0.7) and 13.9(±1.2) kg, respectively. Both the groups psychophysically rated the work in moderate to heavy category. A best-fit curve was obtained from average normalized baseline pause heart rates with work duration (t) as Avg. N.H.R.base=k.t. It has been observed that with extrapolation of the work duration to 8 h from 45 min experimental observation, the heart rate would increase to about 6–8 beats min−1 for both the groups of workers. This equation can be used to approximate the effect of work-duration on heart rate.

Relevance to industry

MAWL study was performed on industrial female workers, which is rarely reported in the literature. Moreover, earlier studies were mainly conducted on the Americans. This study is focused on Indian population to compare the applicability of NIOSH guidelines in Indian context.  相似文献   


10.
The assessment of heat radiation   总被引:3,自引:0,他引:3  
Approximately 900 climatic chamber experiments were performed with 16 male subjects to study the thermal strain at climates including increased heat radiation. Based on the reactions of heart rate, rectal temperature and sweat rate, a heat stress index was developed for the assessment of climates with effective heat radiation intensities up to 1400 W m−2. The index considers different combinations of dry air temperature (5–55°C), globe temperature (25–76°C), mean radiant temperature (25–160°C), air velocity (0.5–2.0 m s−1), clothing, physical work load and directions of radiation and air flow.

The index integrates combinations of the variables producing the same degree of thermal strain into a single value. This value indicates the temperature of the physiologically equivalent climate in which air and radiant temperature are equal. It can be determined from a simple formula or from correspondent graphs.

In comparison, the international recommended heat stress indices are less capable to evaluate heat radiation correctly. The incorporation of the new partial index into the used indices may improve substantially their physiological validity in the assessment of climates with radiant heat stress.

Relevance to industry

The goal of this paper is to provide an improved assessment of thermal stress in working environments in which heat radiation is an important heat stress factor.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号