共查询到20条相似文献,搜索用时 78 毫秒
1.
文本聚类在信息过滤和网页分类等方面有着较好的应用,可是它面临数据维数很高的难点.由于维度很高,使得经典的聚类算法难以有效处理.针对这个问题给出了一种快速鲁棒的映射聚类算法,其中利用关联规则查询簇的相关维,然后使用相关维进行进一步的分析.实验结果说明了该算法具有速度快以及较好的鲁棒性等特点,可以应用在文本聚类中. 相似文献
2.
针对高维数据的聚类研究表明,样本在不同数据簇往往与某些特定的数据特征子集相对应.因此,子空间聚类技术越来越受到关注.然而,现有的软子空间聚类算法都是基于批处理技术的聚类算法,不能很好地应用于高维数据流或大规模数据的聚类研究中.为此,利用模糊可扩展聚类框架,与熵加权软子空间聚类算法相结合,提出了一种有效的熵加权流数据软子空间聚类算法——EWSSC(entropy-weighting streaming subspace clustering).该算法不仅保留了传统软子空间聚类算法的特性,而且利用了模糊可扩展聚类策略,将软子空间聚类算法应用于流数据的聚类分析中.实验结果表明,EWSSC 算法对于高维数据流可以得到与批处理软子空间聚类方法近似一致的实验结果. 相似文献
3.
基于混合并行遗传算法的文本聚类研究 总被引:2,自引:0,他引:2
针对传统K-Means聚类算法对初始聚类中心的选择敏感,易陷入局部最优解的问题,提出一种基于混合并行遗传算法的文本聚类方法。该方法首先将文档集合表示成向量空间模型,并在文档向量中随机选择初始聚类中心形成染色体,然后结合K-Means算法的高效性和并行遗传算法的全局优化能力,通过种群内的遗传、变异和种群间的并行进化、联姻,有效地避免了局部最优解的出现。实验表明该算法相对于K-Means算法、简单遗传算法等文本聚类方法具有更高的精确度和全局寻优能力。 相似文献
4.
5.
6.
基于COSA算法的中文文本聚类 总被引:5,自引:0,他引:5
传统聚类算法在计算两个对象间的距离时,每个属性对距离的贡献相同。COSA(Clustering On Subsets of Attributes)算法[1]认为在不同的分组中,每个属性对计算距离所起的作用可能并不相等,因为不同分组中的对象可能在不同的属性子集上聚集。文献[1]在此基础上定义了新的距离,并提出了两种COSA算法: COSA1算法是一种分割的聚类算法;COSA2算法是一种层次聚类算法。为了对比COSA距离和传统的欧氏距离在文本聚类中的表现,本文对中文文本进行了分割聚类和层次聚类的实验。实验结果显示出COSA算法较基于欧氏距离的聚类算法有更好的性能,而且对于属性数的变化,COSA算法更加稳定。 相似文献
7.
8.
9.
10.
由于文本自身特点使得传统的文档表示模型VSM不能很好地反映文本信息,也让传统数据挖掘聚类算法得不到很好的性能表现。针对传统文本聚类方法中文本表示模型VSM和聚类算法的不足,提出一种基于n-gram短语的文本聚类方法,该方法利用n-gram短语构建短语文档相关模型,将其转换成相关文档模型,在相关文档模型基础上进行文档聚类。实验结果显示,此方法是一种能获得较好聚类结果的有效方法。摘要: 相似文献
11.
12.
13.
14.
为了满足用户对信息检索结果准确不断提高的需求,尽可能应用那些与查询及检索结果有关的信息进行查询结果优化是一种有效的手段。查询扩展和结果重排就是利用附加信息进行检索结果优化的方法。该文提出了基于文档团的文档重排模型(DCRM模型),此模型通过对文档集的学习,构造文档与文档关系的Markov网络,提取出文档Markov网络中的“文档团”,应用文档团信息进行文档重排。在adi、cacm、med、cisi和cran五个数据集上的实验结果表明,本文提出的基于文档团的文档重排模型较BM25模型性能得到有效提高。 相似文献
15.
检索一篇文档在其他语言中的译文对于双语平行语料库的建立是一件很有意义的工作。本文提出一种改进的跨语言相似文档检索算法,该算法使用双语词典或统计翻译模型作为双语知识库,查找两篇文档的共同翻译词对,把翻译词对的权重作为一种特征来进行相似度计算,用Dice方法的改进算法计算双语文档的相似度。在实验中,统计检索文档的译文排在检索结果前 N位的总次数来评价算法的性能,并使用了两个噪音数据集来评价算法的有效性。实验表明,在噪音数据干扰比较大的情况下,译文排在检索结果前5位的译文结果接近90%。实验证明,翻译词对的权重对于相似度计算有很大帮助,本算法可以有效地发现一种语言书写的文档在另一种语言中的译稿。 相似文献
16.
文章针对列表类自动问题回答的任务要求,提出了一种基于短语检索和答案距离排序模型的列表类问题回答的方法。该短语检索模型在传统的TF/IDF检索模型上进行改进,提出了利用不同长度短语作为查询词的检索方法,能够返回更多包含正确答案的相关文档;答案的距离排序模型则利用答案与上下文词之间的距离作为排序的依据对答案列表进行排序,可以提高正确答案的排名。这两种模型地提出在一定程度上解决了如何在返回尽可能多的答案的同时保证答案质量的问题。实验结果表明利用这两种模型的列表类问题回答方法对系统的性能有显著提高。 相似文献
17.
一种支持多语言文本布局方向的文档处理模型 总被引:1,自引:0,他引:1
文档处理是文字处理的关键组成部分,针对多语言混合排版的需求,本文提出了基于“框”的支持不同方向的多语言文本布局的文档处理模型。该模型把对文本布局方向的处理封装在文档格式化模块中,将多文本布局方向的问题规约为文本布局方向为从左向右(水平)的文档格式化的问题,并设计了多文本布局方向文档格式化的递归算法。该模型可以很好支持包括我国民族文字蒙古文、维吾尔文、藏文在内的各种不同书写方向文字的文本布局。 相似文献
18.
19.
在基于向量空间模型的信息检索系统中,TF2IDF 算法被广泛的应用在基于关键字的信息检索中。然而,对于网页独特的超链接结构,需要有一种技术在表示网页内容的同时将与它相邻链接的网页内容考虑进去。本文分析了向量空间模型的实质,并找出了其精度低的原因,在传统模型基础上提出了一种基于网页超链接结构的向量空间模型改进算法。实验分析表明改进后的算法与原算法相比检索精确度提高了10 % ,在一定程度上改善了检索效果。 相似文献