首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
This paper proposes and demonstrates a novel flexible tactile sensor for both normal and shear load detections. For the realization of the sensor, polyimide and polydimethylsiloxane are used as a substrate, which makes it flexible. Thin metal strain gauges, which are incorporated into the polymer, are used for measuring normal and shear loads. The salient feature of this tactile sensor is that it has no diaphragm-like structures. The unit tactile cell characteristics are evaluated against normal and shear loads. The fabricated tactile sensor can measure normal loads of up to 4 N, and the sensor output signals are saturated against loads of more than 4 N. Shear loads can be detected by different voltage drops in strain gauges. The device has no fragile structures; therefore, it can be used as a ground reaction force (GRF) sensor for balance control in humanoid robots. Four tactile unit sensors are assembled and placed in the four corners of the robots sole. By increasing bump dimensions, the tactile unit sensor can measure loads of up to 2 kgf. When loads are exerted on the sole, the GRF can be measured by these four sensors. The measured forces can be used in the balance control of biped locomotion systems.  相似文献   

2.
Tactile sensors based on conductive polymers   总被引:1,自引:1,他引:0  
This paper presents results from a selection of tactile sensors that have been designed and fabricated. These sensors are based on a common approach that consists in placing a sheet of piezoresistive material on the top of a set of electrodes. We use a thin film of conductive polymer as the piezoresistive material. Specifically, a conductive water-based ink of this polymer is deposited by spin-coating on a flexible plastic sheet, giving it a smooth, homogeneous and conducting thin film. The main interest in this procedure is that it is cheap and it allows the fabrication of flexible and low cost tactile sensors. In this work, we present results from sensors made using two technologies. Firstly, we have used a flexible printed circuit board (PCB) technology to fabricate the set of electrodes and addressing tracks. The result is a simple, flexible tactile sensor. In addition to these sensors on PCB, we have proposed, designed and fabricated sensors with screen-printing technology. In this case, the set of electrodes and addressing tracks are made by printing an ink based on silver nanoparticles. The exhaustive characterization provides us insights into the design of these tactile sensors.  相似文献   

3.
This paper presents a novel tactile sensing technique for tissue elasticity measurements. A prototype flexible tactile sensor has been successfully fabricated using polydimethylsiloxane as the structural material. The proposed sensor comprises an array of capacitors with no active elements used. By varying the sizes of sensing membranes within the capacitors, different stiffnesses of sensing diaphragms can be achieved. The elasticity of the targeted object can be thereafter measured based on the relative deflections of the sensing diaphragms. The fabricated sensor has been calibrated by an off-the-shelf polymer durometer hardness selector pack. The results show a sensing resolution of 0.1 MPa for elasticity measurement and a force sensing resolution as small as 5 mN. This flexible tactile sensor can be embedded on the distal portions of various endoscopic instruments for in vivo tissue elasticity measurements. $hfill$[2009-0143]   相似文献   

4.
随着机器人技术的日益发展,柔性传感器在机器人皮肤上的应用也得到了新的发展。本文提出并研究了一种基于导电聚合物压敏电阻效应的柔性触觉传感器的设计,使用由聚二甲基硅氧烷PDMS(Poly Di Methyl Siloxane)和多壁碳纳米管(MWCNTs)混合而成的导电橡胶作为传感器主体,运用EIT(Electrical Impedance Tomography)技术,设计并制作了本系统的硬件电路,并用其检测、传输导电橡胶的边缘电势数据。最后在计算机中应用工具包EIDORS进行有限元模型和图像重构技术,有效且直观的将导电橡胶上的受力位置表现出来。实验对1~3个目标分别进行了成像,证明了本设计的可行性。  相似文献   

5.
6.
There have been technical limitations to manufacture microstructures due to difficulty of demolding during replication process of high aspect ratio microstructure in mass production technologies. In the present study, the fabrication of a novel sacrificial micro mold insert and powder injection molding process using such a micro mold insert is proposed and developed. It utilizes a synchrotron radiation to fabricate the shape of polymer based sacrificial mold inserts and then these mold inserts were exposed at X-ray once more to adjust its solubility. This second X-ray exposure facilitates dissolving of mold inserts instead of demolding process which have difficulties like pattern collapses or defects in case of precise replication process. In this manner, severe problems of demolding process in conventional mass production technologies can be efficiently overcome. To verify the usefulness of the proposed technique, polymer based micro mold inserts with several tens of micrometer sized structure for piezoelectric sensor applications were fabricated using X-ray micromachining process radiated synchrotron. The solubility of mold inserts were optimized by the second X-ray exposure without an X-ray mask and then subsequent powder injection molding process was utilized with a piezoelectric based material. Finally, piezoelectric ceramics with micrometer-scale and high aspect ratio of 5 were successfully fabricated, verifying that the present sacrificial mold system is useful for the precise replication process such as the fabrication of microstructure with high aspect ratio or complicated structure.  相似文献   

7.
本文以PVDF敏感材料的结构性能为出发点,对机器人触觉传感器——人工皮肤的理论基础进行了研究,并就PVDF的压电性从弹性力学的角度进行了分析。在此基础上给出了这一变形体的非线性动态系统的数学描述,为精确而有效地采集力觉感受器的压电信号奠定了基础,为机器人触觉力传感器的设计与制造提供了理论依据。  相似文献   

8.
A method has been developed for analyzing the elastodynamic response ofhigh-speed flexible linkage mechanisms with piezoelectric sensors andactuators. The finite element analysis model is obtained by using amixed variational approach with Hamilton's principle. An efficientsolution method is developed on the basis of complex mode theory. Afour-bar linkage mechanism with all flexible links is employed as anexample to demonstrate the capability of the proposed method. Theinvestigation provides a theoretical basis for complex mode activevibration control of high-speed flexible mechanism systems.  相似文献   

9.
This paper proposes a novel neural network approach for the identification and control of a thin simply supported plate. For the control purpose, the piezoelectric sensors and actuators are attached on a flexible structure. The motion behaviour of a two-dimensional model of piezoelectric materials bounded to the surface of the plate is analytically investigated. A novel linear differential inclusion is developed for a class of multilayer feedforward networks. With this technique, it is shown that the plant identified by the neural network can be represented as a linear time-invariant system. On the basis of the identified model, advanced linear control theory can be directly applied to design the stabilizing flexible structure controller. Extensive simulations are conducted to show the effectiveness of the proposed method.  相似文献   

10.
Object imaging with a piezoelectric robotic tactile sensor   总被引:1,自引:0,他引:1  
A two-dimensional, electrically multiplexed robotic tactile sensor was realized by coupling a piezoelectric polyvinylidene fluoride (PVDF) polymer film to a monolithic silicon integrated circuit (IC). The IC incorporates 64 sensor electrodes arranged in a symmetrical 8×8 matrix. Each electrode occupies a 400×400 μm square area, and they are separated from each other by 300 μm. A 40-μm-thick piezoelectric PVDF polymer film was attached to the electrode array with an electrically nonconductive methane adhesive. The response of the tactile sensor is linear for loads spanning 0.8-135 grams-of-force (gmf) (0.00-1.35 Newtons (N)). The response bandwidth is 25 Hz, the hysteresis level is tolerable, and, for operation in the sensor's linear range, taxel crosstalk is negligible. The historically persistent stability and response reproducibility limitation associated with piezoelectric-based tactile sensors has been solved by implementing a novel pre-charge voltage bias technique to initialize the pre- and post-load sensor responses. A rudimentary tactile object image measurement procedure for applied loads has been devised to recognize the silhouette of a sharp edge, square, trapezoid, isosceles triangle, circle, toroid, slotted screw, and cross-slotted screw  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号