首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
以深度学习为主要代表的人工智能技术正在悄然改变人们的生产生活方式,但深度学习模型的部署也带来了一定的安全隐患.研究针对深度学习模型的攻防分析基础理论与关键技术,对深刻理解模型内在脆弱性、全面保障智能系统安全性、广泛部署人工智能应用具有重要意义.拟从对抗的角度出发,探讨针对深度学习模型的攻击与防御技术进展和未来挑战.首先介绍了深度学习生命周期不同阶段所面临的安全威胁.然后从对抗性攻击生成机理分析、对抗性攻击生成、对抗攻击的防御策略设计、对抗性攻击与防御框架构建4个方面对现有工作进行系统的总结和归纳.还讨论了现有研究的局限性并提出了针对深度学习模型攻防的基本框架.最后讨论了针对深度学习模型的对抗性攻击与防御未来的研究方向和面临的技术挑战.  相似文献   

2.
不同于集中式深度学习模式,分布式深度学习摆脱了模型训练过程中数据必须中心化的限制,实现了数据的本地操作,允许各方参与者在不交换数据的情况下进行协作,显著降低了用户隐私泄露风险,从技术层面可以打破数据孤岛,显著提升深度学习的效果,能够广泛应用于智慧医疗、智慧金融、智慧零售和智慧交通等领域.但生成对抗式网络攻击、成员推理攻击和后门攻击等典型攻击揭露了分布式深度学习依然存在严重隐私漏洞和安全威胁.首先对比分析了联合学习、联邦学习和分割学习3种主流的分布式深度学习模式特征及其存在的核心问题.其次,从隐私攻击角度,全面阐述了分布式深度学习所面临的各类隐私攻击,并归纳和分析了现有隐私攻击防御手段.同时,从安全攻击角度,深入剖析了数据投毒攻击、对抗样本攻击和后门攻击3种安全攻击方法的攻击过程和内在安全威胁,并从敌手能力、防御原理和防御效果等方面对现有安全攻击防御技术进行了度量.最后,从隐私与安全攻击角度,对分布式深度学习未来的研究方向进行了讨论和展望.  相似文献   

3.
深度学习是当前机器学习和人工智能兴起的核心。随着深度学习在自动驾驶、门禁安检、人脸支付等严苛的安全领域中广泛应用,深度学习模型的安全问题逐渐成为新的研究热点。深度模型的攻击根据攻击阶段可分为中毒攻击和对抗攻击,其区别在于前者的攻击发生在训练阶段,后者的攻击发生在测试阶段。本文首次综述了深度学习中的中毒攻击方法,回顾深度学习中的中毒攻击,分析了此类攻击存在的可能性,并研究了现有的针对这些攻击的防御措施。最后,对未来中毒攻击的研究发展方向进行了探讨。  相似文献   

4.
将深度学习用于图数据建模已经在包括节点分类、链路预测和图分类等在内的复杂任务中表现出优异的性能,但是图神经网络同样继承了深度神经网络模型容易在微小扰动下导致错误输出的脆弱性,引发了将图神经网络应用于金融、交通等安全关键领域的担忧。研究图对抗攻击的原理和实现,可以提高对图神经网络脆弱性和鲁棒性的理解,从而促进图神经网络更广泛的应用,图对抗攻击已经成为亟待深入研究的领域。介绍了图对抗攻击相关概念,将对抗攻击算法按照攻击策略分为拓扑攻击、特征攻击和混合攻击三类;进而,归纳每类算法的核心思想和策略,并比较典型攻击的具体实现方法及优缺点。通过分析现有研究成果,总结图对抗攻击存在的问题及其发展方向,为图对抗攻击领域进一步的研究和发展提供帮助。  相似文献   

5.
深度学习目前被广泛应用于计算机视觉、机器人技术和自然语言处理等领域。然而,已有研究表明,深度神经网络在对抗样本面前很脆弱,一个精心制作的对抗样本就可以使深度学习模型判断出错。现有的研究大多通过产生微小的Lp范数扰动来误导分类器的对抗性攻击,但是取得的效果并不理想。本文提出一种新的对抗攻击方法——图像着色攻击,将输入样本转为灰度图,设计一种灰度图上色方法指导灰度图着色,最终利用经过上色的图像欺骗分类器实现无限制攻击。实验表明,这种方法制作的对抗样本在欺骗几种最先进的深度神经网络图像分类器方面有不俗表现,并且通过了人类感知研究测试。  相似文献   

6.
随着深度学习研究与应用的迅速发展,人工智能安全问题日益突出。近年来,深度学习模型的脆弱性和不鲁棒性被不断的揭示,针对深度学习模型的攻击方法层出不穷,而后门攻击就是其中一类新的攻击范式。与对抗样本和数据投毒不同,后门攻击者在模型的训练数据中添加触发器并改变对应的标签为目标类别。深度学习模型在中毒数据集上训练后就被植入了可由触发器激活的后门,使得模型对于正常输入仍可保持高精度的工作,而当输入具有触发器时,模型将按照攻击者所指定的目标类别输出。在这种新的攻击场景和设置下,深度学习模型表现出了极大的脆弱性,这对人工智能领域产生了极大的安全威胁,后门攻击也成为了一个热门研究方向。因此,为了更好的提高深度学习模型对于后门攻击的安全性,本文针对深度学习中的后门攻击方法进行了全面的分析。首先分析了后门攻击和其他攻击范式的区别,定义了基本的攻击方法和流程,然后对后门攻击的敌手模型、评估指标、攻击设置等方面进行了总结。接着,将现有的攻击方法从可见性、触发器类型、标签类型以及攻击场景等多个维度进行分类,包含了计算机视觉和自然语言处理在内的多个领域。此外,还总结了后门攻击研究中常用的任务、数据集与深度学习模型,并介绍了后门攻击在数据隐私、模型保护以及模型水印等方面的有益应用,最后对未来的关键研究方向进行了展望。  相似文献   

7.
深度学习在各种实际应用中取得了巨大成功,如何有效提高各种复杂的深度学习模型在硬件设备上的执行效率是该领域重要的研究内容之一.深度学习框架通常将深度学习模型表达为由基础算子构成的计算图,为了提高计算图的执行效率,传统的深度学习系统通常基于一些专家设计的子图替换规则,采用启发式搜索算法来优化计算图.它们的不足主要有:1)搜...  相似文献   

8.
高质量学习图中节点的低维表示是当前的一个研究热点。现有浅模型的方法无法捕捉图结构的非线性关系,图神经网络技术中的图卷积模型会产生过平滑问题。同时,如何确定不同跳数关系在图表示学习中的作用亦是研究中尚需解决的问题。以解决上述问题为目的,提出一个基于T(T>1)个前馈神经网络的深度学习模型,该框架利用深度模型抽取图结构的非线性关系,T个子模型有效地捕获图的局部和全局(高阶)关系信息,并且它们在最终的向量表示中赋予了不同的作用、从而发挥不同跳数关系的优势。在顶点分类和链接预测任务中的实验结果表明,该框架比现有方法具有竞争力,对比基准算法可以获得20%左右的提升。  相似文献   

9.
随着深度神经网络的广泛应用,其安全性问题日益突出.研究图像对抗样本生成可以提升神经网络的安全性.针对现有通用对抗扰动算法攻击成功率不高的不足,提出一种在深度神经网络中融合对抗层的图像通用对抗扰动生成算法.首先,在神经网络中引入对抗层的概念,提出一种基于对抗层的图像对抗样本产生框架;随后,将多种典型的基于梯度的对抗攻击算法融入到对抗层框架,理论分析了所提框架的可行性和可扩展性;最后,在所提框架下,给出了一种基于RMSprop的通用对抗扰动产生算法.在多个图像数据集上训练了5种不同结构的深度神经网络分类模型,并将所提对抗层算法和4种典型的通用对抗扰动算法分别用于攻击这些分类模型,比较它们的愚弄率.对比实验表明,所提通用对抗扰动生成算法具有兼顾攻击成功率和攻击效率的优点,只需要1%的样本数据就可以获得较高的攻击成率.  相似文献   

10.
赵港  王千阁  姚烽  张岩峰  于戈 《软件学报》2022,33(1):150-170
图神经网络(GNN)是一类基于深度学习的处理图域信息的方法,它通过将图广播操作和深度学习算法结合,可以让图的结构信息和顶点属性信息都参与到学习中,在顶点分类、图分类、链接预测等应用中表现出良好的效果和可解释性,已成为一种广泛应用的图分析方法.然而现有主流的深度学习框架(如TensorFlow、PyTorch等)没有为图...  相似文献   

11.
深度学习在众多领域取得了巨大成功。然而,其强大的数据拟合能力隐藏着不可解释的“捷径学习”现象,从而引发深度模型脆弱、易受攻击的安全隐患。众多研究表明,攻击者向正常数据中添加人类无法察觉的微小扰动,便可能造成模型产生灾难性的错误输出,这严重限制了深度学习在安全敏感领域的应用。对此,研究者提出了各种对抗性防御方法。其中,对抗训练是典型的启发式防御方法。它将对抗攻击与对抗防御注入一个框架,一方面通过攻击已有模型学习生成对抗样本,另一方面利用对抗样本进一步开展模型训练,从而提升模型的鲁棒性。为此,本文围绕对抗训练,首先,阐述了对抗训练的基本框架;其次,对对抗训练框架下的对抗样本生成、对抗模型防御性训练等方法与关键技术进行分类梳理;然后,对评估对抗训练鲁棒性的数据集及攻击方式进行总结;最后,通过对当前对抗训练所面临挑战的分析,本文给出了其未来的几个发展方向。  相似文献   

12.
近年来,深度学习在计算机视觉领域表现出优异的性能,然而研究者们却发现深度学习系统并不具备良好的鲁棒性,对深度学习系统的输入添加少许的人类无法察觉的干扰就能导致深度学习模型失效,这些使模型失效的样本被研究者们称为对抗样本。我们提出迭代自编码器,一种全新的防御对抗样本方案,其原理是把远离流形的对抗样本推回到流形周围。我们先把输入送给迭代自编码器,然后将重构后的输出送给分类器分类。在正常样本上,经过迭代自编码器的样本分类准确率和正常样本分类准确率类似,不会显著降低深度学习模型的性能;对于对抗样本,我们的实验表明,即使使用最先进的攻击方案,我们的防御方案仍然拥有较高的分类准确率和较低的攻击成功率。  相似文献   

13.
近些年威胁网络安全的事件日趋频繁,黑客的攻击手段越来越复杂,网络安全防护的难度不断增加。针对实际攻防环境中攻击策略复杂多变和攻击者不理性的问题,文章将攻击图融入攻防博弈模型,并引入强化学习算法,设计了一种网络主动防御策略生成方法。该方法首先基于改进攻击图的网络脆弱性评估模型,成功压缩策略空间并有效降低建模难度,然后对网络攻防进行博弈模型构建,将攻击者和防御者对网络的攻防策略问题设计为一个多阶段的随机博弈模型,引入强化学习Minimax-Q设计了自学习网络防御策略选取算法。防御者在经过对一系列的攻击行为学习之后,求解出针对该攻击者的最优防御策略。最后,本文通过仿真实验验证了该算法的有效性和先进性。  相似文献   

14.
物理攻击通过在图像中添加受扰动的对抗块使得基于深度神经网络 (DNNs) 的应用失效, 对DNNs的安全性带来严重的挑战。针对物理攻击方法生成的对抗块与真实图像块之间的信息分布不同的特点, 本文提出了能有效避免现有物理攻击的防御算法。该算法由基于熵的检测组件 (Entropy-based Detection Component, EDC) 和随机擦除组件 (Random Erasing Component,REC) 两部分组成。EDC 组件采用熵值度量检测对抗块并对其灰度替换。该方法不仅能显著降低对抗块对模型推理的影响, 而且不依赖大规模的训练数据。REC 模块改进了深度学习通用训练范式。利用该方法训练得到的深度学习模型, 在不改变现有网络结构的前提下, 不仅能有效防御现有物理攻击, 而且能显著提升图像分析效果。上述两个组件都具有较强的可转移性且不需要额外的训练数据, 它们的有机结合构成了本文的防御策略。实验表明, 本文提出的算法不仅能有效的防御针对目标检测的物理攻击(在 Pascal VOC 2007 上的平均精度 (mAP) 由 31.3% 提升到 64.0% 及在 Inria 数据集上由 19.0% 提升到 41.0%), 并且证明算法具有较好的可转移性, 能同时防御图像分类和目标检测两种任务的物理攻击。  相似文献   

15.
深度学习作为人工智能技术的重要组成部分,被广泛应用于计算机视觉和自然语言处理等领域。尽管深度学习在图像分类和目标检测等任务中取得了较好性能,但是对抗攻击的存在对深度学习模型的安全应用构成了潜在威胁,进而影响了模型的安全性。在简述对抗样本的概念及其产生原因的基础上,分析对抗攻击的主要攻击方式及目标,研究具有代表性的经典对抗样本生成方法。描述对抗样本的检测与防御方法,并阐述对抗样本在不同领域的应用实例。通过对对抗样本攻击与防御方法的分析与总结,展望对抗攻击与防御领域未来的研究方向。  相似文献   

16.
The deep learning model encompasses a powerful learning ability that integrates the feature extraction, and classification method to improve accuracy. Convolutional Neural Networks (CNN) perform well in machine learning and image processing tasks like segmentation, classification, detection, identification, etc. The CNN models are still sensitive to noise and attack. The smallest change in training images as in an adversarial attack can greatly decrease the accuracy of the CNN model. This paper presents an alpha fusion attack analysis and generates defense against adversarial attacks. The proposed work is divided into three phases: firstly, an MLSTM-based CNN classification model is developed for classifying COVID-CT images. Secondly, an alpha fusion attack is generated to fool the classification model. The alpha fusion attack is tested in the last phase on a modified LSTM-based CNN (CNN-MLSTM) model and other pre-trained models. The results of CNN models show that the accuracy of these models dropped greatly after the alpha-fusion attack. The highest F1 score before the attack was achieved is 97.45 And after the attack lowest F1 score recorded is 22%. Results elucidate the performance in terms of accuracy, precision, F1 score and Recall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号