首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 265 毫秒
1.
This paper proposes a method for robust reduced-order H filter design for polytopic uncertain systems, using linear matrix inequalities (LMIs). Sufficient LMI conditions for both robust full- and reduced-order H filter design are derived. Convex optimization problems are formulated and solved to obtain optimal H filters by using the resulting LMI conditions. The resulting conditions do not involve any non-convex rank constraints, and thus the proposed method for H filter design guarantees global optimum solutions. Numerical examples are presented to show the effectiveness of the proposed method. Recommended by Editorial Board member Huanshui Zhang under the direction of Editor Young Il Lee. This work was supported by the Brain Korea 21 Project and the Basic Research Program of the Korea Science and Engineering Foundation under grant R01-2006-000-11373-0. Hyoun-Chul Choi received the B.S., M.S., and Ph.D. degrees in Control and Instrumentation Engineering from Ajou University, Suwon, Korea, in 1995, 1997, and 2006, respectively. He was a Visiting Researcher at Griffith University, Brisbane, Australia, from 2001 to 2002, and a Postdoctoral researcher at Ajou University, Suwon, Korea, from 2006 to 2007. Since 2008, he has been with ASRI, School of Electrical Engineering and Computer Science, Seoul National University, Seoul, Korea, where he is currently a Postdoctoral Researcher. His research interests include LMI-based control, optimal and robust control, network-based control, and mechatronics. Dongkyoung Chwa received the B.S. and M.S. degrees from the Department of Control and Instrumentation Engineering in 1995 and 1997, respectively, and the Ph.D. degree from the School of Electrical and Computer Engineering in 2001, all from Seoul National University, Seoul, Korea. From 2001 to 2003, he was a Postdoctoral Researcher with Seoul National University. In 2003, he was a Visiting Research Fellow at The University of New South Wales, Australian Defence Force Academy, and was the Honorary Visiting Academic at the University of Melbourne, Melbourne, Australia. In 2004, he was a BK21 Assistant Professor with Seoul National University. Since 2005, he has been an Assistant Professor with the Department of Electrical and Computer Engineering, Ajou University, Suwon, Korea. His research interests are nonlinear, robust, and adaptive control theories and their applications to the robotics, underactuated systems including wheeled mobile robots, underactuated ships, cranes, and guidance and control of flight systems. Suk-Kyo Hong received the B.S., M.S., and Ph.D. degrees in Electrical Engineering from Seoul National University, Seoul, Korea, in 1971, 1973, and 1981, respectively. His major graduate research works were centered on speed control of induction motors. He was an Exchange Professor at Rensselaer Polytechnic Institute, Troy, NY, from 1982 to 1983, and at the Institut National de Recherche en Informatique et en Automatique, France, from 1988 to 1989. He has been with the faculty of the Department of Electrical and Computer Engineering, Ajou University, Suwon, Korea, since 1976, and was a Visiting Professor at Griffith University, Australia, in 2001 and 2002. His current research interests include robust robot control, microprocessor applications, factory automation, and computer integrated manufacturing.  相似文献   

2.
Gait-based human identification aims to discriminate individuals by the way they walk. A unique advantage of gait as a biometric is that it requires no subject contact and is easily acquired at a distance, which stands in contrast to other biometric techniques involving face, fingerprints, iris, etc. This paper proposes a new gait representation called motion energy image (MEI). Compared with other gait features, MEI is more robust against noise that can be included in binary gait silhouette images due to various factors. The effectiveness of the proposed method for gait recognition is demonstrated using experiments performed on the NLPR database. Recommended by Editorial Board member Jang Myung Lee under the direction of Editor Jae-Bok Song. This work was supported by the Korea Science and Engineering Foundation (KOSEF) through the Biometrics Engineering Research Center (BERC) at Yonsei University. Grant Number: R11-2002-105-09002-0 (2009). Heesung Lee received the B.S. and M.S. degrees in Electrical and Electronic Engineering, from Yonsei University, Seoul, Korea, in 2003 and 2005, respectively. He is currently a Ph.D. candidate of Dept. of Electrical and Electronic Engineering at Yonsei University. His current research interests include computational intelligence, pattern recognition, biometrics, and neural network. Sungjun Hong received the B.S. degrees in Electrical and Electronic Engineering and Computer Science, from Yonsei University, Seoul, Korea, in 2005. He is a graduate student of the combined master’s and doctoral degree programs at Yonsei University. He has studied machine learning, biometrics and optimization Imran Fareed Nizami received the B.S. degree from University of Engg. & Tech. Taxila, Pakistan and the M.S. degree in the Electrical and Electronic Engineering from Yonsei University, Seoul, Korea. He is currently a senior lecturer in Bahria University, Islamabad, Pakistan. His research interests include biometrics, gait recognition, Bayesian and neural networks. Euntai Kim received the B.S. (with top honors), M.S. and Ph.D. degrees in Electronic Engineering from Yonsei University, Seoul, Korea, in 1992, 1994, and 1999, respectively. From 1999 to 2002, he was a Full-time Lecturer with the Department of Control and Instrumentation Engineering at Hankyong National University, Gyeonggi-do, Korea. Since 2002, he has been with the School of Electrical and Electronic Engineering at Yonsei University, where he is currently an associate professor. He was a Visiting Scholar with the University of Alberta, Edmonton, Canada, and the Berkeley Initiative in Soft Computing (BISC), UC Berkeley, USA, in 2003 and 2008, respectively. His current research interests include computational intelligence and machine learning and their application to intelligent service robots, unmanned vehicles, home networks, biometrics, and evolvable hardware.  相似文献   

3.
In this paper, we propose a new topology called theDual Torus Network (DTN) which is constructed by adding interleaved edges to a torus. The DTN has many advantages over meshes and tori such as better extendibility, smaller diameter, higher bisection width, and robust link connectivity. The most important property of the DTN is that it can be partitioned into sub-tori of different sizes. This is not possible for mesh and torus-based systems. The DTN is investigated with respect to allocation, embedding, and fault-tolerant embedding. It is shown that the sub-torus allocation problem in the DTN reduces to the sub-mesh allocation problem in the torus. With respect to embedding, it is shown that a topology that can be embedded into a mesh with dilation δ can also be embedded into the DTN with less dilation. In fault-tolerant embedding, a fault-tolerant embedding method based on rotation, column insertion, and column skip is proposed. This method can embed any rectangular grid into its optimal square DTN when the number of faulty nodes is fewer than the number of unused nodes. In conclusion, the DTN is a scalable topology well-suited for massively parallel computation. Sang-Ho Chae, M.S.: He received the B.S. in the Computer Science and Engineering from the Pohang University of Science and Technology (POSTECH) in 1994, and the M.E. in 1996. Since 1996, he works as an Associate Research Engineer in the Central R&D Center of the SK Telecom Co. Ltd. He took part in developing SK Telecom Short Message Server whose subscribers are now over 3.5 million and Advanced Paging System in which he designed and implemented high availability concepts. His research interests are the Fault Tolerance, Parallel Processing, and Parallel Topolgies. Jong Kim, Ph.D.: He received the B.S. degree in Electronic Engineering from Hanyang University, Seoul, Korea, in 1981, the M.S. degree in Computer Science from the Korea Advanced Institute of Science and Technology, Seoul, Korea, in 1983, and the Ph.D. degree in Computer Engineering from Pennsylvania State University, U.S.A., in 1991. He is currently an Associate Professor in the Department of Computer Science and Engineering, Pohang University of Science and Technology, Pohang, Korea. Prior to this appointment, he was a research fellow in the Real-Time Computing Laboratory of the Department of Electrical Engineering and Computer Science at the University of Michigan from 1991 to 1992. From 1983 to 1986, he was a System Engineer in the Korea Securities Computer Corporation, Seoul, Korea. His major areas of interest are Fault-Tolerant Computing, Performance Evaluation, and Parallel and Distributed Computing. Sung Je Hong, Ph.D.: He received the B.S. degree in Electronics Engineering from Seoul National University, Korea, in 1973, the M.S. degree in Computer Science from Iowa State University, Ames, U.S.A., in 1979, and the Ph.D. degree in Computer Science from the University of Illinois, Urbana, U.S.A., in 1983. He is currently a Professor in the Department of Computer Science and Engineering, Pohang University of Science and Technology, Pohang, Korea. From 1983 to 1989, he was a staff member of Corporate Research and Development, General Electric Company, Schenectady, NY, U.S.A. From 1975 to 1976, he was with Oriental Computer Engineering, Korea, as a Logic Design Engineer. His current research interest includes VLSI Design, CAD Algorithms, Testing, and Parallel Processing. Sunggu Lee, Ph.D.: He received the B.S.E.E. degree with highest distinction from the University of Kansas, Lawrence, in 1985 and the M.S.E. and Ph.D. degrees from the University of Michigan, Ann Arbor, in 1987 and 1990, respectively. He is currently an Associate Professor in the Department of Electronic and Electrical Engineering at the Pohang University of Science and Technology (POSTECH), Pohang, Korea. Prior to this appointment, he was an Associate Professor in the Department of Electrical Engineering at the University of Delaware in Newark, Delaware, U.S.A. From June 1997 to July 1998, he spent one year as a Visiting Scientist at the IBM T. J. Watson Research Center. His research interests are in Parallel, Distributed, and Fault-Tolerant Computing. Currently, his main research focus is on the high-level and low-level aspects of Inter-Processor Communications for Parallel Computers.  相似文献   

4.
This paper presents new object-spatial layout-route based hybrid map representation and global localization approaches using a stereo camera. By representing objects as high-level features in a map, a robot can deal more effectively with different contexts such as dynamic environments, human-robot interaction, and semantic information. However, the use of objects alone for map representation has inherent problems. For example, it is difficult to represent empty spaces for robot navigation, and objects are limited to readily recognizable things. One way to overcome these problems is to develop a hybrid map that includes objects and the spatial layout of a local space. The map developed in this research has a hybrid structure that combines a global topological map and a local hybrid map. The topological map represents the spatial relationships between local spaces. The local hybrid map combines the spatial layout of the local space with the objects found in that space. Based on the proposed map, we suggest a novel coarse-to-fine global localization method that uses object recognition, point cloud fitting and probabilistic scan matching. This approach can accurately estimate robot pose with respect to the correct local space. Recommended by Editor Jae-Bok Song. This research was performed for the Intelligent Robotics Development Program, one of the 21st Century Frontier R&D Programs funded by the Ministry of Knowledge Economy of Korea. Soonyong Park received the B.S. and M.S. degrees from the Department of Mechanical Engineering, Kyunghee University, Seoul, Korea, in 2001 and 2003, respectively. He is currently working toward the Ph.D. degree in the Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea. Since 2001, he has been a student researcher in the Center for Cognitive Robotics Research, Korea Institute of Science and Technology (KIST), Seoul, Korea. His research interests include mobile robot navigation and computer vision. Mignon Park received the B.S. and M.S. degrees in Electronics from Yonsei University, Seoul, Korea, in 1973 and 1977, respectively. He received the Ph.D. degree in University of Tokyo, Japan, 1982. He was a researcher with the Institute of Biomedical Engineering, University of Tokyo, Japan, from 1972 to 1982, as well as at the Massachusetts Institute of Technology, Cambridge, and the University of California Berkeley, in 1982. He was a visiting researcher in Robotics Division, Mechanical Engineering Laboratory, Ministry of International Trade and Industry, Tsukuba, Japan, from 1986 to 1987. He has been a Professor in the Department of Electrical and Electronic Engineering in Yonsei University, since 1982. His research interests include fuzzy control and application, robotics, and fuzzy biomedical system. Sung-Kee Park is a principal research scientist for Korea Institute of Science and Technology (KIST). He received the B.S. and M.S. degrees in Mechanical Design and Production Engineering from Seoul National University, Seoul, Korea, in 1987 and 1989, respectively. He received the Ph.D. degree (2000) from Korea Advanced Institue of Science and Technology (KAIST), Korea, in the area of computer vision. Since then, he has been working for the center for cognitive robotics research at KIST. During his period at KIST, he held a visiting position at the Robotics Institute of Carnegie Mellon University in 2005, where he did research on object recognition. His recent work has been on cognitive visual processing, object recognition, visual navigation, and human-robot interaction.  相似文献   

5.
The objective of the study was to propose a MFR (Multipurpose Field Robot) in hazardous operation environments. This system combines a basic system composed of a multi-DOF (Degree Of Freedom) manipulator and a mobile platform with an additional module for construction, national defense and emergency-rescue. According to an additional module type combined with a basic system, it can be used in a various fields. In this study, we describe a prototype of construction robot which helps a human operator handle easily construction materials in case of using the cooperation system on construction site. This study introduces an additional module for construction and a robot control algorithm for a HRC (Human-Robot Cooperation). In addition, it proposes a novel construction method to install construction materials with robot on construction site. Seung Yeol Lee received the B.S. degree from the Department of Mechanical Engineering, Myungji University, Seoul, Korea in 2002, and the M.S. degree from the Department of Mechatronics Engineering, Hanyang University, Seoul, Korea in 2005. He is a Ph.D. degree candidate from the Department of Mechanical Engineering, Hanyang University, Seoul, Korea. From 2003, He is currently a visiting researcher in the Research Institute of Technology, Construction Group at the Samsung Corporation, Korea conducting the design and implementation of construction robot and automation system for construction project. His research interests include design, control, and application of construction robots, field robotic systems and ergonomic design of robotic systems. He is a member of the Korea Society of Mechanical Engineers, Architectural Institute of Korea, and Ergonomics Society of Korea. Yong Seok Lee received the B.S. degree from the Department of Precision Mechanical Engineering, Kunsan national University, Kunsan, Korea in 2002, and the M.S. degree from the Department of Precision Mechanical Engineering, Hanyang University, Seoul, Korea in 2005. Currently, he is the Post Master in Hanyang University, Korea. His major interests include design and kinematic/dynamic analysis on multi-purpose field robots and service robots. He is a member of the Architectural Institute of Korea. Bum Seok Park received the B.S. degree from the Department of Mechanical Engineering, Hanyang University, Ansan, Kyung-gi Do, Korea in 1993, and the M.S. degree from the Department of Mechatronics Engineering, Hanyang University, Seoul, Korea in 1998. He is a Ph.D. from the Department of Mechatronics System Engineering, Hanyang University, Seoul, Korea From 2006. He is currently the post-doctor in Hanyang University, Korea. His major interests include embedded robot control system on multi-purpose field robot and service robot. He is a member of the Korea Society of Mechanical Engineers, Korean Society of Machine Tool Engineers. Sang Heon Lee graduated with the B.S. degree in Precision Mechanical Engineering from Hanyang University, Seoul, Korea in 1992. He received the M.S. degree in Precision Engineering from KAIST, Taejon, Korea in 1994 and the Ph.D. degree in Mechanical Engineering from KAIST in 2001. Currently, he is a senior researcher in Samsung Corporation, Korea. His major interests include the kinematic/dynamic analysis on multi-body system, application of field robots, and automation in construction. ChangSoo Han received the B.S. degree from the Department of Mechanical Engineering, Seoul National University Technology, Seoul, Korea in 1983, and the M.S. and Ph.D. degrees from the Department of Mechanical Engineering, University of Texas at Austin, in 1985 and 1989, respectively. From May 1988 to September 1989, he was a Research Assistant, Robotics Lab in Mechanical Engineering about manufacturing of the high resolution micro manipulator module. In March 1990, he joined Hanyang University, Ansan, Kyungki-Do, Korea as a Professor, Department of Mechanical Engineering. From March 1993 to February 1995, he was a Vice President, The Research Institute of Engineering & Technology of the Hanyang University. From August 1996 to July 1997, he was a Visiting Professor, Univ. of California at Berkeley. From September 1997 to February 1999, he was a Director, Hanyang Business Incubator. In August 2000, he joined a Branch President, The Korean Society of Mechanical Engineers. In January 2002, he joined a Committee Member, The Korean Society of Mechanical Engineers. From January 2001 to December 2001, he was an International Cooperation Director, The Institute of Control, Automation and Systems, Korea. His research interests include design, control, and application of robot, automation systems, and advanced vehicle.  相似文献   

6.
We obtain an optimal H 2 decoupling controller for rectangular plants in a standard two-degree-of-freedom controller configuration model. The class of all stabilizing and decoupling loop controllers is parameterized in terms of free diagonal parameter matrices. We determined the optimal decoupling controller from these free parameters. Inner-outer factorization and the Khatri-Rao product expression for the vector operation to a diagonal matrix are the key steps in obtaining the H 2 optimal solution. We provide a compact set of assumptions to assure the existence of the optimal solution. Recommended by Editorial Board member Jietae Lee under the direction of Editor Young Il Lee. Goon-Ho Choi received the B.S. and M.S. degrees in Electrical Engineering and the Ph.D. degree in Control Engineering from Sungkyunkwan University, Suwon, Korea, on February 1993, 1995 and 1999, respectively. From 1999 to 2005, he worked as a Senior Engineer in the research and development area of Han-Mi Semiconductor Co. Ltd, Hanool Robotics Co., and Dasa Robot Co. Ltd, respectively. Since 2006, he has been a lecturer in the School of Mechanical Engineering, at Korea University of Technology and Education, Chungnam, Korea. His research interests include robust optimal control, robotics, motion control, sequence control, and the human-machine interface of an automated machine. Kiheon Park received the B.S. and M.S. degrees in Electrical Engineering from Seoul National University, Korea in 1978 and 1980, respectively, and the Ph.D. degree in System Engineering from Polytechnic University, NY, in 1987. From 1980 to 1983, he served in the Korean Navy as a Full-time Instructor at the Naval Academy. He was the recipient of a Korea Electric Association Scholarship from 1983 to 1986. From 1988 to 1990, he worked for the Electronic and Telecommunication Research Institute (ETRI), Daejeon, Korea, where he was involved in a factory automation project. Since March 1990, he has been with the School of Information and Communication Engineering at Sungkyunkwan University, Suwon, Korea, where he is currently a Professor. His research interests include linear multivariable control, decoupling controller design, vibration control and networked control systems. Joon-Hong Jung received the B.S. and M.S. degrees in Electrical Engineering from Sungkyunkwan University, Suwon, Korea, in 1996 and 1998, respectively, and the Ph.D. degree in Electrical and Computer Engineering from Sungkyunkwan University, Suwon, Korea, in 2005. From 2007 to 2008, he was a Visiting Professor at Sungkyunkwan University. Since 2005, he has been with the R&D Department at Korea Electric Power Data Network Co., Ltd., where he is currently a Staff Researcher. His research interests include network-based control system, robust control, and power system monitoring and diagnosis.  相似文献   

7.
This paper proposes a novel method to designing an H PID controller with robust stability and disturbance attenuation. This method uses particle swarm optimization algorithm to minimize a cost function subject to H -norm to design robust performance PID controller. We propose two cost functions to design of a multiple-input, multiple-output (MIMO) and single-input, single-output (SISO) robust performance PID controller. We apply this method to a SISO flexible-link manipulator and a MIMO super maneuverable F18/HARV fighter aircraft system as two challenging examples to illustrate the design procedure and to verify performance of the proposed PID controller design methodology. It is shown with the MIMO super maneuverable F18/HARV fighter system that PSO performs well for parametric optimization functions and performance of the PSO-based method without prior domain knowledge is superior to those of existing GA-based and OSA-based methods for designing H PID controllers. Recommended by Editorial Board member Jietae Lee under the direction of Editor Young-Hoon Joo. This work was supported by the Iranian Telecommunication Research Center (ITRC) under Grant T500-11629. Majid Zamani received the B.Sc. and M.Sc. degrees in Electrical Engineering in 2005 and 2007 from Isfahan University of Technology, and Sharif University of Technology, Iran, respectively. Currently, He is a Ph.D. student in Electrical Engineer-ing Department of University of California, Los Angeles, U.S.A. Nasser Sadati was born in Iran in 1960. He received the B.S. degree from Oklahoma State University, Stillwater, in 1982, and the M.S. and Ph.D. degrees from Cleveland State University, Cleveland, OH, USA, in 1985 and 1989, respectively, all in Electrical Engineering. From 1986 to 1987, he was with the NASA Lewis Research Center, Cleveland, to study the albedo effects on space station solar array. In 1989, he conducted postgraduate research at Case Western Reserve University, Cleveland, OH. Since 1990, he has been with the Sharif University of Technology, Tehran, Iran, where he is currently a Full Professor in the Department of Electrical Engineering, the Head of Control Group, and the Director of the Intelligent Systems Laboratory and the Co-Director of Robotics and Machine Vision Laboratory. He was the first to introduce the subject of fuzzy logic and intelligent control as course work in the universities engineering program in Iran. He has published two books in Persian and over 200 technical papers in peer-reviewed journals and conference proceedings, and is currently working on two more books in English (Intelligent Control of Large-Scale Systems) and Persian (Neural Networks). His research interests include intelligent control and soft computing, large-scale systems, robotics and pattern recognition. Dr. Sadati was the recipient of the Academic Excellence Award for 1998–1999 from the Sharif University of Technology. He is a Founding Member of the Iranian Journal of Fuzzy Systems (IJFS). He is the Founder and Chairman of the First Symposiums on Fuzzy Logic, and Intelligent Control and Soft Computing in Iran. He is the editorial board members of International Journal of Advances in Fuzzy Mathematics (AFM) and the Journal of Iranian Association of Electrical and Electronics Engineers (IAEEE). He also has served as the Co-Chair of the First International Conference on Intelligent and Cognitive Systems (ICICS’96). Dr. Sadati is a Founding Member of the Center of Excellence in Power System Management and Control (CEPSMC), Sharif University of Technology, Tehran, Iran and the Foreign Member of the Institute of Control, Robotics, and Systems (ICROS), Korea. Masoud Karimi Ghartemani received the B.Sc. and M.Sc. in Electrical Engineering in 1993 and 1995 from Isfahan University of Technology, Iran, where he continued to work as a Teaching and Research Assistant until 1998. He received the Ph.D. degree in Electrical Engineering from University of Toronto in 2004. He was a Research Associate and a Post-doctoral Researcher in the Department of Electrical and Computer Engineering of the University of Toronto from 1998 to 2001 and from 2004 to 2005, respectively. He joined Sharif University of Technology, Tehran, Iran, in 2005 as a Faculty Member. His research topics include nonlinear and optimal control, novel control and signal processing techniques/algorithms for control and protection of modern power systems, power electronics, power system stability and control, and power quality.  相似文献   

8.
New fusion predictors for linear dynamic systems with different types of observations are proposed. The fusion predictors are formed by summation of the local Kalman filters/predictors with matrix weights depending only on time instants. The relationship between fusion predictors is established. Then, the accuracy and computational efficiency of the fusion predictors are demonstrated on the first-order Markov process and the GMTI model with multisensor environment. Recommended by Editorial Board member Lucy Y. Pao under the direction of Editor Young Il Lee. This work was partially supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MOST), No. R01-2007-000-20227-0 and the Center for Distributed Sensor Network at GIST. Ha-Ryong Song received the B.S. degree in Control and Instrumentation Engineering from the Chosun University, Korea, in 2006, the M.S. degree in School of Information and Mechatronics from the Gwangju Institute of Science and Technology, Korea, in 2007. He is currently a Ph.D. candidate in Gwangju Institute of Science and Technology. His research interests include estimation, target tracking systems, data fusion, nonlinear filtering. Moon-Gu Jeon received the B.S. degree in architectural engineering from the Korea University, Korea in 1988. He then received both the M.S. and Ph.D. degrees in computer science and scientific computation from the University of Minnesota in 1999 and 2001, respectively. Currently, he is an Associate Professor at the School of Information and Mechatronics of the Gwangju Institute of Science and Technology (GIST). His current research interests are in machine learning and pattern recognition and evolutionary computation. Tae-Sun Choi received the B.S. degree in Electrical Engineering from the Seoul National University, Seoul, Korea, in 1976, the M.S. degree in Electrical Engineering from the Korea Advanced Institute of Science and Technology, Seoul, Korea, in 1979, and the Ph.D. degree in Electrical Engineering from the State University of New York at Stony Brook, in 1993. He is currently a Professor in the School of Information and Mechatronics at Gwangju Institute of Science and Technology, Korea. His research interests include image processing, machine/robot vision, and visual communications. Vladimir Shin received the B.Sc. and M.Sc. degrees in Applied Mathematics from Moscow State Aviation Institute, in 1977 and 1979, respectively. In 1985 he received the Ph.D. degree in Mathematics at the Institute of Control Science, Russian Academy of Sciences, Moscow. He is currently an Associate Professor at Gwangju Institute of Science and Technology, South Korea. His research interests include estimation, filtering, tracking, data fusion, stochastic control, identification, and other multidimensional data processing methods.  相似文献   

9.
Swing-up control for an inverted pendulum with restricted cart rail length   总被引:3,自引:0,他引:3  
In this paper, we propose a new swing-up strategy for cart inverted pendulums with restricted rail length. The proposed swing-up strategy is derived from a new Lyapunov function. The Lyapunov function is defined as the sum of the square of the pendulum energy and the weighted square of the cart’s velocity. The resulting swing-up strategy is represented in a compact form and has two design parameters. By adjusting these design parameters, we can affect the swing-up strategy such that the restriction on the rail length is satisfied. We also provide a state-dependent transformation to obtain voltage input to a DC motor required to generate the cart’s acceleration obtained from the proposed swing-up strategy. Finally, we illustrate the performance of the proposed swing-up law through simulation and experiments. It is shown that there is quite good correspondence between theory and experiments. Recommended by Editorial Board member Duk-Sun Shim under the direction of Editor Jae Weon Choi. This work was supported by an Inha Research Grant. Ji-Hyuk Yang received the M.Sc. degree in Electrical Engineering from Inha University, Inchon, Korea, in 2008. He is currently pursuing a Ph.D. degree in Electrical Engineering at Inha University, Inchon, Korea. His primary research interest lies in the development of rapid control prototyping environment. Su-Yong Shim received the B.Sc. degree in Electrical Engineering from Inha University, Inchon, Korea, in 2008. He is currently pursuing his M.Sc. degree in Electrical Engineering at Inha University, Inchon, Korea. His research interests are mechatronics and embedded systems. Jung-Hun Seo received the B.Sc. degree in Electrical Engineering from Inha University, Inchon, Korea, in 2008. He is currently pursuing his M.Sc. degree in Electrical Engineering at Inha University, Inchon, Korea. His research interests are mechatronics, embedded systems, and control applications. Young Sam Lee received the B.S. and M.S. degrees in Electrical Engineering from Inha University, Inchon, Korea in 1997 and 1999, respectively. He received the Ph.D. at the School of Electrical Engineering and Computer Science from Seoul National University, Seoul, Korea, in 2003. His research interests include time delay systems, receding horizon control, signal processing, and embedded systems. He is currently with the School of Electrical Engineering, Inha University, Incheon, Korea.  相似文献   

10.
In this paper, we have introduced a prototype of a fish robot driven by unimorph piezoceramic actuators. To improve the swimming performance of the fish robot in terms of tail-beat angle, swimming speed, and thrust force, we used four light-weight piezo-composite actuators (LIPCAs) instead of the two LIPCAs used in the previous model. We also developed a new actuation mechanism consisting of links and gears. Performance tests of the fish robot were conducted in water at various tail-beat frequencies to measure the tail-beat angle, swimming speed, and thrust force. The tail-beat angle was significantly better than that of the previous model. The best tail-beat frequency of the fish robot was 1.4 Hz and the maximum thrust force was 0.0048 N. A miniaturized power supply, which was developed to excite the LIPCAs, was installed inside the fish robot body for free swimming. The maximum free-swimming speed was 3.2 cm/s. Recommended by Editorial Board member Hyoukryeol Choi under the direction of Editor Jae-Bok Song. This work was supported by the Korea Research Foundation under grant KRF-2004-005-D00045. Quang Sang Nguyen received the BS (2001) and MS (2006) from Hochiminh City University of Technology, Vietnam. Formerly an assistant lecturer of Naval Architect and Marine Engineering, Hochiminh City University of Technology, Vietnam (2001-2006), he is currently a Ph.D. student at the Department of Advanced Technology Fusion, Konkuk University. His specialty is biomimetic system design and smart material application. Seok Heo received the B.S., M.S. and Ph.D. degrees in Mechanical Engineering from Dongguk University in 1998, 2000, and 2003, Respectively. Currently he is a Research Professor at the Artificial Muscle Researcch Center, Konkuk University, Seoul, Korea. His research interests include biomimetics, vibration analysis, system design and control, and smart materials and structures. Hoon Cheol Park received the B.S. (1985) and M.S. (1987) from Seoul National University in Seoul, Korea and Ph.D. (1994) from the University of Maryland at College Park, MD, USA. He joined the Department of Aerospace Engineering, Konkuk University in Seoul, Korea, in 1995, and he is currently a Professor in the Department of Advanced Technology Fusion. His professional experience includes Kia Motors (1986–1988) and Korea Aerospace Research Institute (1994–1995). His specialty is finite element analysis and his recent research has focused on biomimetics. Nam Seo Goo graduated with honors in 1990 from the Department of Aeronautics Engineering of Seoul National University, and he got a masters degree and Ph.D. from the Department of Aerospace Engineering at the same university in 1992 and 1996, respectively. His Ph.D. thesis was on the structural dynamics of aerospace systems. As soon as he obtained the Ph.D. he entered the Agency for Defense development as a senior researcher. In 2002, after four years of service, he joined the Department of Aerospace Engineering at Konkuk University, Seoul, Korea, where he is currently serving as an Associate Professor of the Department of Advanced Technology Fusion. His current research interests include structural dynamics of small systems, smart structures and materials, and MEMS applications. Taesam Kang is a Professor of the Department of Aerospace and Information System Engineering, Konkuk University. He received the B.S., M.S. and Ph.D. degrees from Seoul National University in 1986, 1988 and 1992, respectively. His current research areas are robust control theories and the application of those theories with regard to flight control, development of micro-aerial vehicles and fish robots. Kwang Joon Yoon was awarded the BS (1981) and M.S. (1983) in Aeronautics Engineering from Seoul National University and Ph.D. (1990) in Aeronautics and Astronautics Engineering from Purdue. Since 1991 he has been a Professor at Konkuk University in Korea, where he is currently a Professor of Aerospace Engineering, the Director of the National Research Laboratory for Active Structures and Materials, the Director of the Artificial Muscle Research Center, and the Director of the Smart Robot Center. His current research interests include smart structures and materials, micro-aerial vehicles, and insect-mimetic micro-robot systems. Seung Sik Lee received the B.S. (1996) and M.S. (1998) in Civil Engineering from Hongik University in Seoul, Korea and Ph.D. (2003) in Civil Engineering from Georgia Institute of Technology, GA, USA. Currently he is a Senior Researcher at Korea Institute of Marine Science & Technology Promotion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号