首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
For an ordered set W = {w1, w2,…, wk} of vertices and a vertex v in a connected graph G, the (metric) representation of v with respect to W is the k-vector r(v | W) = (d(v, w1), d(v, w2),…, d(v, wk)), where d(x, y) represents the distance between the vertices x and y. The set W is a resolving set for G if distinct vertices of G have distinct representations. A new sharp lower bound for the dimension of a graph G in terms of its maximum degree is presented.

A resolving set of minimum cardinality is a basis for G and the number of vertices in a basis is its (metric) dimension dim(G). A resolving set S of G is a minimal resolving set if no proper subset of S is a resolving set. The maximum cardinality of a minimal resolving set is the upper dimension dim+(G). The resolving number res(G) of a connected graph G is the minimum k such that every k-set W of vertices of G is also a resolving set of G. Then 1 ≤ dim(G) ≤ dim+(G) ≤ res(G) ≤ n − 1 for every nontrivial connected graph G of order n. It is shown that dim+(G) = res(G) = n − 1 if and only if G = Kn, while dim+(G) = res(G) = 2 if and only if G is a path of order at least 4 or an odd cycle.

The resolving numbers and upper dimensions of some well-known graphs are determined. It is shown that for every pair a, b of integers with 2 ≤ ab, there exists a connected graph G with dim(G) = dim+(G) = a and res(G) = b. Also, for every positive integer N, there exists a connected graph G with res(G) − dim+(G) ≥ N and dim+(G) − dim(G) ≥ N.  相似文献   


2.
We show that given any family of asymptotically stabilizable LTI systems depending continuously on a parameter that lies in some subset [a1,b1]××[ap,bp] of , there exists a C0 time-varying state feedback law v(t,x) (resp. a C0 time-invariant feedback law v(x)) which robustly globally exponentially stabilizes (resp. which robustly stabilizes, not asymptotically) the family. Further, if these systems are obtained by linearizing some nonlinear systems, then v(t,x) locally exponentially stabilizes these nonlinear systems. Finally, v(t,x) globally exponentially stabilizes any time-varying system which switches “slowly enough” between the given LTI systems.  相似文献   

3.
In (Röschel, l997) B-spline technique was used for blending of Lagrange interpolants. In this paper we generalize this idea replacing Lagrange by Hermite interpolants. The generated subspline b(t) interpolates the Hermite input data consisting of parameter values ti and corresponding derivatives ai,j, j=0,…,i−1, and is called blended Hermite interpolant (BHI). It has local control, is connected in affinely invariant way with the input and consists of integral (polynomial) segments of degree 2·k−1, where k−1max{i}−1 denotes the degree of the B-spline basis functions used for the blending. This method automatically generates one of the possible interpolating subsplines of class Ck−1 with the advantage that no additional input data is necessary.  相似文献   

4.
In this paper, the existence of at least three positive solutions for the boundary value problem (BVP) of second-order functional differential equation with the form y″(t) + f(t, yt) = 0, for t ε [0,1], y(t) -βy′(t) =η(t), for t ε [−τ,0], −γy(t) + Δy′(t) = ζ(t), for t ε [1, 1 + a], is studied. Moreover, we investigate the existence of at least three partially symmetric positive solutions for the above BVP with Δ = βγ.  相似文献   

5.
The aim of this paper is double. First, we point out that the hypothesis D(t1)D(t2) = D(t2)D(t1) imposed in [1] can be removed. Second, a constructive method for obtaining analytic-numerical solutions with a prefixed accuracy in a bounded domain Ω(t0,t1) = [0,p] × [t0,t1], for mixed problems of the type ut(x,t) − D(t)uxx(x,t) = 0, 0 < x < p, t> 0, subject to u(0,t) = u(p,t) = 0 and u(x,0) = F(x) is proposed. Here, u(x,t) and F(x) are r-component vectors, D(t) is a Cr × r valued analytic function and there exists a positive number δ such that every eigenvalue z of (1/2) (D(t) + D(t)H) is bigger than δ. An illustrative example is included.  相似文献   

6.
In this paper, we consider coupled semi-infinite diffusion problems of the form ut(x, t)− A2 uxx(x,t) = 0, x> 0, t> 0, subject to u(0,t)=B and u(x,0)=0, where A is a matrix in , and u(x,t), and B are vectors in . Using the Fourier sine transform, an explicit exact solution of the problem is proposed. Given an admissible error and a domain D(x0,t0)={(x,t);0≤xx0, tt0 > 0, an analytic approximate solution is constructed so that the error with respect to the exact solution is uniformly upper bounded by in D(x0, t0).  相似文献   

7.
We substantially improve the known algorithms for approximating all the complex zeros of an nth degree polynomial p(x). Our new algorithms save both Boolean and arithmetic sequential time, versus the previous best algorithms of Schönhage [1], Pan [2], and Neff and Reif [3]. In parallel (NC) implementation, we dramatically decrease the number of processors, versus the parallel algorithm of Neff [4], which was the only NC algorithm known for this problem so far. Specifically, under the simple normalization assumption that the variable x has been scaled so as to confine the zeros of p(x) to the unit disc x : |x| ≤ 1, our algorithms (which promise to be practically effective) approximate all the zeros of p(x) within the absolute error bound 2b, by using order of n arithmetic operations and order of (b + n)n2 Boolean (bitwise) operations (in both cases up to within polylogarithmic factors). The algorithms allow their optimal (work preserving) NC parallelization, so that they can be implemented by using polylogarithmic time and the orders of n arithmetic processors or (b + n)n2 Boolean processors. All the cited bounds on the computational complexity are within polylogarithmic factors from the optimum (in terms of n and b) under both arithmetic and Boolean models of computation (in the Boolean case, under the additional (realistic) assumption that n = O(b)).  相似文献   

8.
The paper presents sufficient conditions for the existence of positive solutions of the equation x″(t) + q(t)f(t,x(t),x′(t)) = 0 with the Dirichlet conditions x(0) = 0, x(1) = 0 and of the equation (p(t)x′(t))′ + p(t)q(t)f(t,x(t),p(t)x′(t)) = 0 with the boundary conditions limto+ p(t)x′(t) = 0, x(1) = 0. Our nonlinearity f is allowed to change sign and f may be singular at x = 0. The proofs are based on a combination of the regularity and sequential techniques and the method of lower and upper functions.  相似文献   

9.
Consdier I(z) = ∫ba w(t)f(t, z) dt, f(t, z) = (1 + t/z)−1. It is known that generalized Gaussian quadrature of I(z) leads to approximations which occupy the (n, n + r − 1) positions of the Padé matrix table for I(z). Here r is a positive integer or zero. In a previous paper the author developed a series representation for the error in Gaussian quadrature. This approach is now used to study the error in the Padé approximations noted. Three important examples are treated. Two of the examples are generalized to the case where f(t, z) = (1 + t/z)v.  相似文献   

10.
We present some criteria for the oscillation of the second-order nonlinear differential equation where a ε C1([t0, ∞)) is a nonnegative function, q ε C ([t0, ∞)) are allowed to change sign on [t0, ∞), ψ, f ε C1 , ψ(x) > 0, xf(x) > 0, f′(x) ≥ 0 for x ≠ 0. These criteria are obtained by using a general class of the parameter functions H(t,s) in the averaging techniques and represent extension, as well as improvement of known oscillation criteria of Philos and Purnaras for the generalized Emden-Fowler equation.  相似文献   

11.
In this paper, we obtain some new sufficient conditions for the existence of nontrivial m-periodic solutions of the following nonlinear difference equation
by using the critical point method, where f: Z × R → R is continuous in the second variable, m ≥ 2 is a given positive integer, pn+m = pn for any n  Z and f(t + m, z) = f(t, z) for any (t, z)  Z × R, (−1)δ = −1 and δ > 0.  相似文献   

12.
This paper describes some new techniques for the rapid evaluation and fitting of radial basic functions. The techniques are based on the hierarchical and multipole expansions recently introduced by several authors for the calculation of many-body potentials. Consider in particular the N term thin-plate spline, s(x) = Σj=1N djφ(xxj), where φ(u) = |u|2log|u|, in 2-dimensions. The direct evaluation of s at a single extra point requires an extra O(N) operations. This paper shows that, with judicious use of series expansions, the incremental cost of evaluating s(x) to within precision ε, can be cut to O(1+|log ε|) operations. In particular, if A is the interpolation matrix, ai,j = φ(xixj, the technique allows computation of the matrix-vector product Ad in O(N), rather than the previously required O(N2) operations, and using only O(N) storage. Fast, storage-efficient, computation of this matrix-vector product makes pre-conditioned conjugate-gradient methods very attractive as solvers of the interpolation equations, Ad = y, when N is large.  相似文献   

13.
We present particle simulations of natural convection of a symmetrical, nonlinear, three-dimensional cavity flow problem. Qualitative studies are made in an enclosure with localized heating. The assumption is that particles interact locally by means of a compensating Lennard-Jones type force F, whose magnitude is given by −G/rp + H/rq.

In this formula, the parameters G, H, p, q depend upon the nature of the interacting particles and r is the distance between two particles. We also consider the system to be under the influence of gravity. Assuming that there are n particles, the equations relating position, velocity and acceleration at time tk = kΔt, K = 0, 1, 2, …, are solved simultaneously using the “leap-frog” formulas. The basic formulas relating force and acceleration are Newton's dynamical equations Fi,k = miai,k, I = 1, 2, 3, …, n, where mi is the mass of the ith particle.

Extensive and varied computations on a CRAY X - MP/24 are described and discussed, and comparisons are made with the results of others.  相似文献   


14.
Consider the cubic sensor dx = dw, dy = x3dt + dv where w, v are two independent Brownian motions. Given a function φ(x) of the state x let φt(x) denote the conditional expectation given the observations ys, 0 s t. This paper consists of a rather detailed discussion and outline of proof of the theorem that for nonconstant φ there cannot exist a recursive finite-dimensional filter for φ driven by the observations.  相似文献   

15.
In the long-lived M-renaming problem, N processes repeatedly acquire and release names ranging over {0, …, M − 1}, where M < N. It is assumed that at most k M processes concurrently request or hold names. Efficient solutions to the long-lived renaming problem can be used to improve the performance of applications in which processes repeatedly perform computations whose time complexity depends on the size of the name space containing the processes that participate concurrently. In this paper, we consider wait-free solutions to the long-lived M -renaming problem that use only read and write instructions in an asynchronous, shared-memory multiprocessor. A solution to long-lived renaming is fast if the time complexity of acquiring and releasing a name once is independent of N. We present a new fast, long-lived (k(k + 1)/2)renaming algorithm that significantly improves upon the time and space complexity of similar previous algorithms, while providing a much simpler solution. We also show that fast, long-lived (2k − 1)-renaming can be implemented with reads and writes. This result is optimal with respect to the size of the name space.  相似文献   

16.
Explicit expressions for the element stiffness matrix K and element load vector p for the rectangular plane-stress and plane-strain finite elements associated with Ψ(x, y) = a0 + a1x + a2y + a3xy type interpolation rule are given for the general anisotropic material in xy-planc subjected to non-uniform temperature increases. The expressions are optimized with respect to the numerical operations required for the computation of K and p, and they are valid for special cases of material properties and thermal loading.  相似文献   

17.
The distribution of black leaf nodes at each level of a linear quadtree is of significant interest in the context of estimation of time and space complexities of linear quadtree based algorithms. The maximum number of black nodes of a given level that can be fitted in a square grid of size 2n × 2n can readily be estimated from the ratio of areas. We show that the actual value of the maximum number of nodes of a level is much less than the maximum obtained from the ratio of the areas. This is due to the fact that the number of nodes possible at a level k, 0≤kn − 1, should consider the sum of areas occupied by the actual number of nodes present at levels k + 1, k + 2, …, n − 1.  相似文献   

18.
The evolution of the gingerbread man   总被引:3,自引:0,他引:3  
Two versions of the evolution of the Gingerbread Man for the iteration zzx + c are presented. A previously published version shows an asymmetric evolution as positive real x increases, while a new version shows a symmetric evolution, and several interesting features. Fractal “growth” is described that occurs along certain “shock” lines with this new evolution. A floating “object” appears while approaching certain positive even integer values of x. Finally, a few comments are made about images created from negative values of x.  相似文献   

19.
Given a digraph (or an undirected graph) G=(V,E) with a set V of vertices v with nonnegative real costs w(v), and a set E of edges and a positive integer k, we deal with the problem of finding a minimum cost subset SV such that, for each vertex vVS, there are k vertex-disjoint paths from S to v. In this paper, we show that the problem can be solved by a greedy algorithm in time in a digraph (or in time in an undirected graph), where n=|V| and m=|E|. Based on this, given a digraph and two integers k and ℓ, we also give a polynomial time algorithm for finding a minimum cost subset SV such that for each vertex vVS, there are k vertex-disjoint paths from S to v as well as ℓ vertex-disjoint paths from v to S.  相似文献   

20.
This paper presents an efficient algorithm for enumerating all minimal a-b separators separating given non-adjacent vertices a and b in an undirected connected simple graph G = (V, E), Our algorithm requires O(n3Rab) time, which improves the known result of O(n4Rab) time for solving this problem, where ¦V¦= n and Rab is the number of minimal a-b separators. The algorithm can be generalized for enumerating all minimal A-B separators that separate non-adjacent vertex sets A, B < V, and it requires O(n2(nnAnb)RAB) time in this case, where na = ¦A¦, nB = ¦B¦ and rAB is the number of all minimal AB separators. Using the algorithm above as a routine, an efficient algorithm for enumerating all minimal separators of G separating G into at least two connected components is constructed. The algorithm runs in time O(n3R+Σ + n4RΣ), which improves the known result of O(n6RΣ) time, where Rσ is the number of all minimal separators of G and RΣR+Σ = ∑1i, vj) ERvivj n − 1)/2 − m)RΣ. Efficient parallelization of these algorithms is also discussed. It is shown that the first algorithm requires at most O((n/log n)Rab) time and the second one runs in time O((n/log n)R+Σ+n log nRΣ) on a CREW PRAM with O(n3) processors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号