共查询到18条相似文献,搜索用时 46 毫秒
1.
在人脸图像识别优化的研究中,针对由单张人脸图像重建三维模型时对人脸图像姿态存在要求的问题,为了提高识别精度,提出基于单张人脸图像姿态预估计和主成分分析(PCA)的形状模型重建算法.首先由三维姿态估计方法得到人脸姿态,并建立人脸形状模型样本库,然后通过选取的特征点,利用主成分分析进行三维人脸形状模型的重构,最后利用径向基函数(RBF)变换和特征点坐标精确调整三维人脸形状模型,并进行仿真.仿真结果表明,重构的三维人脸形状模型效果良好,提高了精度,对有旋转姿态的人脸图像和特征点定位误差也有很好的鲁棒性. 相似文献
2.
形变模型是基于三维人脸原型库的人脸建模方法。因为该模型具有自动化、真实感好等优点,成为近年来人脸建模研究的热点。该文回顾了形变模型建立的过程,总结了近几年对于形变模型研究的新进展,并对形变模型发展进行了展望。 相似文献
3.
针对现在广泛使用的三维形变模型表达能力不够,导致重建出的三维人脸模型泛化性能不佳的问题,提出了一种在姿态、表情和光照未知的条件下的基于单张人脸图片的三维人脸重建和密集人脸对齐的新方法。首先,通过卷积神经网络对现有的三维形变模型进行改进,以提高三维人脸模型的表达能力;然后,基于人脸光滑性和图像相似性,在特征点和像素层面提出新的损失函数,并使用弱监督学习训练卷积神经网络模型;最后,通过训练出的网络模型进行三维人脸重建和密集人脸对齐。实验结果表明,对于三维人脸重建任务,所提模型在AFLW2000-3D上实现了2.25的归一化平均误差;对于密集人脸对齐任务,所提模型在AFLW2000-3D和AFLW-LFPA上分别实现了3.80和3.34的归一化平均误差。与原始使用三维形变模型的方法相比,所提模型在三维人脸重建和密集人脸对齐上的归一化平均误差分别降低了7.4%和7.8%。针对不同光照环境以及角度的人脸图片,该网络模型的重建准确,鲁棒性好,且具有较高的三维人脸重建和密集人脸对齐质量。 相似文献
4.
针对现在广泛使用的三维形变模型表达能力不够,导致重建出的三维人脸模型泛化性能不佳的问题,提出了一种在姿态、表情和光照未知的条件下的基于单张人脸图片的三维人脸重建和密集人脸对齐的新方法。首先,通过卷积神经网络对现有的三维形变模型进行改进,以提高三维人脸模型的表达能力;然后,基于人脸光滑性和图像相似性,在特征点和像素层面提出新的损失函数,并使用弱监督学习训练卷积神经网络模型;最后,通过训练出的网络模型进行三维人脸重建和密集人脸对齐。实验结果表明,对于三维人脸重建任务,所提模型在AFLW2000-3D上实现了2.25的归一化平均误差;对于密集人脸对齐任务,所提模型在AFLW2000-3D和AFLW-LFPA上分别实现了3.80和3.34的归一化平均误差。与原始使用三维形变模型的方法相比,所提模型在三维人脸重建和密集人脸对齐上的归一化平均误差分别降低了7.4%和7.8%。针对不同光照环境以及角度的人脸图片,该网络模型的重建准确,鲁棒性好,且具有较高的三维人脸重建和密集人脸对齐质量。 相似文献
5.
论文提出了一种新的基于三维人脸形变模型,并兼容于MPEG-4的三维人脸动画模型。采用基于均匀网格重采样的方法建立原型三维人脸之间的对齐,应用MPEG-4中定义的三维人脸动画规则,驱动三维模型自动生成真实感人脸动画。给定一幅人脸图像,三维人脸动画模型可自动重建其真实感的三维人脸,并根据FAP参数驱动模型自动生成人脸动画。 相似文献
6.
7.
吴凯 《网络安全技术与应用》2014,(11):161-162
本文提出了基于形变模型的多视图三维人脸重建方法,将人脸形变模型与同一人脸在不同视点下的多幅图像进行匹配,从而重建出具有较强真实感的三维人脸模型。本文将对基于形变模型的多视图三维人脸重建方法进行详细的阐述,并把实验结果与单视图重建出的三维人脸模型进行了对比,从而体现出多视图重建的优势所在。 相似文献
8.
基于形变模型的三维人脸重建方法及其改进 总被引:16,自引:0,他引:16
形变模型(morphable model)是近几年出现的三维人脸建模新方法.该方法使用原型人脸的组合表示新的人脸,对于特定人脸图像,通过模型匹配实现了三维人脸的自动重建.虽然形变模型具有自动化、真实感好等优点,但现有形变模型的建立依赖于不稳定的人脸图像对应光流算法,模型匹配只考虑了一般光照环境下的人脸重建问题,且建模计算量大.针对以上问题,文章对形变模型进行了改进:提出了网格重采样的方法,实现了模型人脸数据的精确对应;建立了多分辨率的三维人脸模型;在模型匹配过程中采用了多光源光照模型,使模型可适用于复杂光照环境下的人脸重建.实验结果表明,上述改进可以有效提高模型匹配的效率和准确性以及模型对光照的适应性. 相似文献
9.
摘 要:采用人脸特征点调整三维形变模型的方法应用于面部三维重建,但模型形变的计 算往往会产生误差,且耗时较长。因此运用人脸二维特征点对通用三维形变模型的拟合方法进 行改进,提出了一种视频流的多角度实时三维人脸重建方法。首先利用带有三层卷积网络的 CLNF 算法识别二维特征点,并跟踪特征点位置;然后由五官特征点位置估计头部姿态,更新 模型的表情系数,其结果再作用于 PCA 形状系数,促使当前三维模型发生形变;最后采用 ISOMAP 算法提取网格纹理信息,进行纹理融合形成特定人脸模型。实验结果表明,该方法在 人脸重建过程中具有更好的实时性能,且精确度有所提高。 相似文献
10.
给出了一种有效支持个性化变形的三维人脸模型结构和一种特征约束的实时连续多分辨率绘制方法。为方便变形中特征点及相关区域的移动,模型结构的设计体现了人脸特征及模型中点、边、面的邻接关系。基于这种模型结构的多分辨率绘制方法给出了特征约束的有序递减网格设计,实现了视距相关的快速模型简化,在保持模型视觉特征的同时保证了实时连续绘制。 相似文献
11.
针对图像驱动的三维人脸建模这个计算机图形学中的研究热点问题,提出一种采用三维人脸形变模型的三维人脸自动生成与编辑算法.首先建立三维人脸形变模型,由三维人脸数据库统计学习得到线性混合人脸模型,用一个低维的参数向量来描述一个人脸;然后通过人脸检测、人脸对齐、边缘提取等方法从人脸图像中提取人脸的特征,根据这些特征实现三维人脸形变模型与图像的匹配,重建出与图像对应的三维人脸模型;最后,通过改变参数向量的值实现人脸的编辑.对5个输入人脸照片进行了三维人脸模型重建和编辑并且将重建的人脸模型和真实人脸模型进行了对比,实验结果表明,该算法可实现真实化的人脸重建效果. 相似文献
12.
BJUT-3D三维人脸数据库及其处理技术 总被引:5,自引:0,他引:5
BJUT-3D是目前国际上最大的中国人的三维人脸数据库,其中包括经过顸处理的1200名中国人的三维人脸数据,这一数据资源对于三维人脸识别与建模方面的研究有重要意义.首先介绍了BJUT-3D数据库的数据获取条件、数据形式,并针对数据库建立过程中数据预处理技术进行了讨论.最后作为数据库的直接应用,进行了多姿态人脸识别和人脸姿态估计算法的研究.实验结果证实,该算法具有良好的性能. 相似文献
13.
论文提出了一种基于改进的自适应主元提取算法的人脸识别方法。采用改进的自适应主元提取算法将人脸图像由高维观测空间投影到低维特征空间,通过改进前馈网络权值更新方程,降低算法的复杂度和计算量。基于三维人脸形变模型,采用区域填充和曲面消隐算法根据一幅人脸图像生成多个虚拟样本,克服人脸识别中的小样本问题。在ORL和UMIST数据库上的实验结果表明,该文提出的算法在识别性能上明显高于传统的Eigenface和Fisherface方法。 相似文献
14.
15.
《国际自动化与计算杂志》2024,21(5)
One-shot face reenactment is a challenging task due to the identity mismatch between source and driving faces.Most exist-ing methods fail to completely eliminate the interference of driving subjects'identity information,which may lead to face shape distor-tion and undermine the realism of reenactment results.To solve this problem,in this paper,we propose using a 3D morphable model(3DMM)for explicit facial semantic decomposition and identity disentanglement.Instead of using 3D coefficients alone for reenactment control,we take advantage of the generative ability of 3DMM to render textured face proxies.These proxies contain abundant yet com-pact geometric and semantic information of human faces,which enables us to compute the face motion field between source and driving images by estimating the dense correspondence.In this way,we can approximate reenactment results by warping source images accord-ing to the motion field,and a generative adversarial network(GAN)is adopted to further improve the visual quality of warping results.Extensive experiments on various datasets demonstrate the advantages of the proposed method over existing state-of-the-art bench-marks in both identity preservation and reenactment fulfillment. 相似文献
16.
现有的三维人脸建模方法存在三点不足:建模条件苛刻、建模精度不高和建模时间长。针对以上不足,提出明暗恢复形状(SFS)和局部形变模型融合的3D人脸建模方法。该方法利用SFS快速恢复3D人脸粗糙数据,得到3D轮廓脸;然后分别对人脸不同局部应用形变模型恢复其局部3D精确数据,并使用其对轮廓脸进行内插平滑处理重建出高精度3D人脸模型。实验结果表明:该方法能够获得较好的建模精度,在短时间内可以通过单幅真实图像重建出个性化的三维人脸模型。 相似文献
17.
三维人脸相较于二维人脸包含了更多特征信息,可应用于如人脸识别、影视娱乐、医疗美容等更多实际应用场景,因此三维人脸重建技术一直是计算机视觉领域的研究热点.由于真实三维人脸数据较难获取,很多基于深度学习的重建算法首先利用传统重建方法为大量二维人脸图像构建三维标签,作为训练数据,这些数据可能并不精准,从而导致算法的重建精度受到影响.为此,本文提出一种基于multi-level损失函数的弱监督学习模型,结合传统三维人脸形变模型3DMM与深度学习方法,直接从大量无三维标签的二维人脸图像中学习三维人脸特征信息,从而实现基于单张二维人脸图像的三维人脸重建算法.此外,为解决二维人脸图像中常存在遮挡或大姿态情况而影响人脸纹理重建的问题,本文使用基于CelebAMask-HQ数据集的人脸解析分割算法对图像进行预处理去除遮挡区域.实验结果表明,基于本文方法的三维人脸重建质量与重建精度均实现了一定的提升. 相似文献