共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACTTwitter has become a popular microblogging service that allows millions of active users share news, emergent social events, personal opinions, etc. That leads to a large amount of data producing every day and the problem of managing tweets becomes extremely difficult. To categorize the tweets and make easily in searching, the users can use the hashtags embedding in their tweets. However, valid hashtags are not restricted which lead to a very heterogeneous set of hashtags created on Twitter, increasing the difficulty of tweet categorization. In this paper, we propose a hashtag recommendation method based on analyzing the content of tweets, user characteristics, and currently popular hashtags on Twitter. The proposed method uses personal profiles of the users to discover the relevant hashtags. First, a combination of tweet contents and user characteristics is used to find the top-k similar tweets. We exploit the content of historical tweets, used hashtags, and the social interaction to build the user profiles. The user characteristics can help to find the close users and enhance the accuracy of finding the similar tweets to extract the hashtag candidates. Then a set of hashtag candidates is ranked based on their popularity in long and short periods. The experiments on tweet data showed that the proposed method significantly improves the performance of hashtag recommendation systems. 相似文献
2.
如何有效利用海量的数据是当前机器学习面临的一个重要任务,传统的支持向量机是一种有监督的学习方法,需要大量有标记的样本进行训练,然而有标记样本的数量是十分有限的并且非常不易获取.结合Co-training算法与Tri-training算法的思想,给出了一种半监督SVM分类方法.该方法采用两个不同参数的SVM分类器对无标记样本进行标记,选取置信度高的样本加入到已标记样本集中.理论分析和计算机仿真结果都表明,文中算法能有效利用大量的无标记样本,并且无标记样本的加入能有效提高分类的正确率. 相似文献
3.
4.
提出一种基于支持向量机的渐近式半监督式学习算法,它以少量的有标记数据来训练初始学习器,通过选择性取样规则和核参数来调节无标记样本的选择范围和控制学习器决策面的动态调节方向,并通过删除非支持向量来降低学习代价。仿真实验表明,只要能够选择适当的选择性取样的阈值和核参数,这种学习算法就能够以较少的学习代价获得较好的学习效果。 相似文献
5.
分析目前比较流行的两种推荐算法各自存在的优缺点,针对两种单一推荐算法各自的优缺点,提出一种基于定性映射的混合推荐算法模型,以拓扑邻域为定性基准进行邻近查找操作,通过转化程度函数对结果进行优化,提高推荐系统的推荐精度,并通过实验验证该混合算法的可行性和精确性。 相似文献
6.
基于XCP协议的拥塞控制研究 总被引:4,自引:0,他引:4
对一种全新的拥塞控制协议XCP(eXplicit Control Protocol)进行了研究。在分析传统TCP的拥塞控制机制不足的基础上,对XCP协议的拥塞头格式进行了剖析,给出了基于XCP协议实现拥塞控制的基本原理。最后通过对比实验,验证了XCP协议在拥塞控制性能上比传统的TCP协议更优越。 相似文献
7.
基于路由器解析式模型的NoC网络性能分析方法 总被引:1,自引:1,他引:1
建立一种高效的片上网络(NoC)性能分析方法对NoC早期的系统设计分析具有重要的指导意义.首先从NoC路由器工作原理出发,对报文传输中的各种阻塞现象进行分析,建立了基于M/G/1/N排队系统的路由器模型;然后提出NoC网络性能分析算法,并且给出了传输延迟、饱和吞吐率等参数的解析表达式.与时钟精度仿真结果比较表明,该方法分析误差约为6.9%,但分析效率提高了约200倍.该方法适用于指导程序NoC拓扑映射,在获取最优映射方案同时,可有效地挖掘网络通信瓶颈. 相似文献
8.
推荐系统广泛应用于人们生活的多个领域,日常生活中常见的有电商、电影、音乐和新闻推荐等.推荐系统根据用户的历史偏好主动推送相关的信息,节约了用户的时间,极大地提升了用户的体验.随着大数据技术的发展成熟,数据处理的速度变得更快.该文选取MovieLens电影数据集,并基于大数据分布式处理框架Spark和交替最小二乘法ALS... 相似文献
9.
10.
多视点视频编码方法除需具有较高编码效率外,还必须支持视点或时间的随机访问、低延时编解码、视点可分级等性能.多视点视频信号的时间、视点间相关性随相机密度、光照、对象运动等因素不同而变化.文中提出基于多视点视频信号相关性分析的多模式多视点视频编码方法,改变传统单一预测模式的多视点编码结构,将多种性能优良的预测编码模式有机结合,根据多视点视频相关性分析灵活选择合适的预测编码模式,以获得优异的编码综合性能.实验结果表明,所提出的多模式多视点视频编码方法在保证高压缩效率的前提下,可进一步降低复杂度,提高随机访问性能. 相似文献
11.
基于分形特征的网络异常检测方法研究 总被引:2,自引:0,他引:2
网络连接同许多其它现象一样,呈现出一种统计自相似性。论文根据此特征提出了一种基于分形特征的网络异常检测方法,该方法能够根据网络连接分形维数的变化,有效地检测网络拒绝服务攻击和端口扫描等异常情况,并通过模拟实验证明了该方法的可行性。 相似文献
12.
推荐系统的目的是为了基于用户喜爱,为用户提供最高匹配度的潜在项目.但如果用户和项目提供者喜欢单一的热门项目,那么用户不能发现新颖性项目,会给用户和项目的提供商双方造成巨大损失.现有的新颖推荐工作主要集中在对由精度为基础的基础模型生成的前N个列表进行重新排序.结果,这些框架是两阶段的,并且结果基本上限于基础模型.另外,在... 相似文献
13.
基于内容预测和项目评分的协同过滤推荐 总被引:8,自引:1,他引:8
文中提出了一种基于内容预测和项目评分的协同过滤推荐算法,根据基于内容的推荐计算出用户对未评分项目的评分,在此基础上采用一种基于项目的协同过滤推荐算法计算项目的相似性,随后作出预测。实验结果表明,该算法可以有效解决用户评分数据极端稀疏的情况,同时运用基于项目的相似性度量方法改善了推荐的精确性,显著提高推荐系统的推荐质量。 相似文献
14.
The existing Multi-View Learning (MVL) is to discuss how to learn from patterns with multiple information sources and has
been proven its superior generalization to the usual Single-View Learning (SVL). However, in most real-world cases there are
just single source patterns available such that the existing MVL cannot work. The purpose of this paper is to develop a new
multi-view regularization learning for single source patterns. Concretely, for the given single source patterns, we first
map them into M feature spaces by M different empirical kernels, then associate each generated feature space with our previous proposed Discriminative Regularization
(DR), and finally synthesize M DRs into one single learning process so as to get a new Multi-view Discriminative Regularization (MVDR), where each DR can
be taken as one view of the proposed MVDR. The proposed method achieves: (1) the complementarity for multiple views generated
from single source patterns; (2) an analytic solution for classification; (3) a direct optimization formulation for multi-class
problems without one-against-all or one-against-one strategies. 相似文献
15.
电子商务环境下,交易双方由于缺乏相互信任的基础和知识,因而交易面临较高的风险.提出一种基于领域本体交易内容相似度,并同时区别熟人节点和陌生人节点推荐可信程度的推荐信任模型(简称DOCSRTrust),给出了一种基于类别的分层次交易商品领域本体构建法,设计了DOCSRTrust的数学表述模型和实现算法.DOCSRTrust模型消除了现有全局信任模型是基于信任值高的节点其推荐也更值得信赖的主观假设,这种主观假设在目前大规模分布式网络环境下并不符合实际情况,因而其客观性和可靠性难以保证.相比之下,分析和仿真实验证明了DOCSRTrust模型更符合当前新型网络应用环境,其在抵抗恶意节点诋毁、遏制协同作弊等较广泛的安全问题上成功率都有较大程度的改善和提高. 相似文献
16.
17.
18.
Existing recommender systems provide an elegant solution to the information overload in current digital libraries such as the Internet archive. Nowadays, the sensors that capture the user's contextual information such as the location and time are become available and have raised a need to personalize recommendations for each user according to his/her changing needs in different contexts. In addition, visual documents have richer textual and visual information that was not exploited by existing recommender systems. In this paper, we propose a new framework for context-aware recommendation of visual documents by modeling the user needs, the context and also the visual document collection together in a unified model. We address also the user's need for diversified recommendations. Our pilot study showed the merits of our approach in content based image retrieval. 相似文献
19.
Peng-Peng Zhao Hai-Feng Zhu Yanchi Liu Zi-Ting Zhou Zhi-Xu Li Jia-Jie Xu Lei Zhao Victor S. Sheng 《计算机科学技术学报》2018,33(4):727-738
With the development and prevalence of online social networks, there is an obvious tendency that people are willing to attend and share group activities with friends or acquaintances. This motivates the study on group recommendation, which aims to meet the needs of a group of users, instead of only individual users. However, how to aggregate different preferences of different group members is still a challenging problem: 1) the choice of a member in a group is influenced by various factors, e.g., personal preference, group topic, and social relationship; 2) users have different influences when in different groups. In this paper, we propose a generative geo-social group recommendation model (GSGR) to recommend points of interest (POIs) for groups. Specifically, GSGR well models the personal preference impacted by geographical information, group topics, and social influence for recommendation. Moreover, when making recommendations, GSGR aggregates the preferences of group members with different weights to estimate the preference score of a group to a POI. Experimental results on two datasets show that GSGR is effective in group recommendation and outperforms the state-of-the-art methods. 相似文献
20.
对电子商务网站的Web页面进行商品信息自动抽取,可以为进一步的增值服务,如比价、查询等提供有价值的信息。为此,提出一种Web内容自动抽取方法。通过对比标签树对目标页面进行去噪,采用基于树匹配的子树相似度计算方法挖掘目标页面的数据富集区域,从而抽取商品的数据记录。在5个电子商务网站上的实验结果表明,该方法的准确率均高于MDR方法,且召回率较高。 相似文献