首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
飞行仿真转台伺服系统滑模控制器设计   总被引:2,自引:2,他引:2  
针对转台位置伺服系统中存在的非线性摩擦环节.设计一种补偿摩擦的滑模控制器。该控制器把摩擦作为系统的有界扰动,利用滑模控制,在仅知道摩擦力矩上界的情况下,对摩擦进行补偿。仿真结果表明,该控制器有效地抑制摩擦力矩的影响,实现高精度的位置跟踪,鲁棒性强。  相似文献   

2.
基于数据挖掘与系统理论建立摩擦模糊模型与控制补偿   总被引:2,自引:0,他引:2  
建立机械摩擦力模型及其相应的控制补偿策略一直是人们所关注的问题. 由于摩擦力所固有的非线性及不确定特征, 用传统的数学建模与控制补偿方法难以达到满意的系统性能要求. 本文采用模糊建模技术逼近摩擦动力系统并将辨识结果用在前馈补偿控制器设计中. 模糊建模过程由以下3个部分组成: 首先采用数据挖掘技术辨识出模糊系统的模糊规则库, 然后利用该规则库建立模糊系统的静态模型, 最后以李雅普诺夫稳定性理论为基础进一步辨识出模糊系统的动态模型. 在控制器设计方面, 采用了自适应模糊系统前馈补偿的比例微分(Proportional-derivative, PD)算法. 运用李雅普诺夫稳定性分析证明了闭环系统跟踪误差的有界性. 数值仿真结果表明了该方法的有效性和实用性.  相似文献   

3.
一类非线性互联系统的模型参考跟踪模糊H∞控制   总被引:1,自引:0,他引:1  
对一类不确定非线性互联系统,给出了一种模型参考跟踪分散模糊H∞控制方法.采用模糊不确定T-S模型对非线性不确定互联系统进行模糊建模,应用并行分布补偿算法(PDC)给出了模型参考跟踪分散模糊H∞控制的设计及算法.应用李亚普诺夫方法证明了模糊闭环分散系统的稳定性分析.仿真结果进一步验证了该方法的有效性.  相似文献   

4.
含有驱动器模型的移动机器人自适应跟踪控制   总被引:1,自引:0,他引:1  
本文针对包含驱动器模型的移动机器人, 考虑到其在粗糙表面上运动过程中所受的摩擦力以及不可建模的动态的影响, 使用反步设计法(Backstepping)给出了一种自适应跟踪控制策略.其中对于不可建模的动态, 本文使用一种非线性函数对其影响进行抵消,使得机器人的路径跟踪对不确定具有鲁棒性; 对于摩擦力项, 使用径向基神经网络(RBFNN)对其进行逼近, 在控制器中能够根据逼近值给予相应的摩擦力补偿量, 从而使移动机器人比较适合在粗糙度大的路面(如沙地)上进行路径跟踪. 仿真结果验证了该控制方法的有效性.  相似文献   

5.
针对一类输入饱和不确定Brunovsky标准型非线性时滞系统,提出一种周期自适应跟踪补偿学习算法. 利用信号置换思想重组系统,基于最小公倍周期函数变换,将时滞时变项和不确定项合并为辅助参数,进而设计周期自适应学习律估计该辅助量,并利用饱和补偿器逼近和补偿超出饱和限的部分,由此构成综合控制器,以保证系统状态对有界期望值的跟踪,解决了饱和输入周期系统的重复迭代学习控制问题. 最后通过构造Lyapunov-Krasovskii复合能量函数的差分,计算证明了系统跟踪误差的收敛性和闭环信号值的有界性. 常见耦合非线性机械臂系统的力矩控制仿真,进一步验证了该算法的有效性.  相似文献   

6.
低速稳定性是伺服系统的一个重要性能指标.低速下,摩擦力的扰动引起伺服控制系统的不稳定.首先建立了伺服系统的动力学模型.模型由线性部分和非线性部分组成,非线性部分主要由摩擦力等扰动组成,使用最小二乘支持向量机对摩擦力等非线性部分、不确定参数进行辨识.其次,建立了基于线性伺服控制系统和摩擦力模型的补偿控制系统,并提出使用改进的优化滑模控制算法,同时对采样时间周期提出了优化选择.仿真结果显示:使用支持向量机建立的摩擦力模型能够较准确地反映系统低速摩擦力情况,对系统的低速补偿效果良好.低速时,误差控制在0.5r/min;通过实验研究,使用了摩擦力补偿和优化滑模控制后伺服系统的低速性能得到了改善和提高,克服了低速爬行现象.  相似文献   

7.
本文应用控制理论分析了非线性摩擦力因素对机械手电机侗服控制系统的影响,提出了一种对非线性摩擦力补偿及改善系统动态特性的方法。仿真结果表明,这种方法是可行的。  相似文献   

8.
吕娴娜  刘银年 《测控技术》2012,31(11):60-62
伺服控制系统中非线性摩擦力矩的干扰是影响系统性能提高的主要因素。为了减小摩擦力矩的影响,提出了基于扩展卡尔曼滤波器的状态观测器对摩擦力进行估计,采用改进型Tustin摩擦模型仿真实际摩擦力矩。Matlab仿真结果表明,构建的摩擦观测器能较准确地对摩擦力进行估计,加入摩擦力补偿后能有效改善运动控制系统性能,速度误差由18%降低到3%。  相似文献   

9.
马天力  王新民  彭程  李婷  边琦 《控制与决策》2016,31(12):2255-2260
强跟踪容积卡尔曼滤波器在对含有模型误差和时变噪声的非线性系统进行滤波时, 容易出现性能降低甚至发散. 鉴于此, 提出一种基于变分贝叶斯的强跟踪容积卡尔曼滤波算法. 该算法运用虚拟噪声法补偿模型误差, 假设虚拟噪声均值非零, 且满足高斯分布, 虚拟噪声方差服从逆gamma分布, 在强跟踪容积卡尔曼滤波器估计状态的同时, 采用变分贝叶斯推理估计虚拟噪声参数. 仿真结果表明, 所提出算法对含模型误差与时变噪声的非线性系统具有较好的估计精度, 相比于自适应算法具有更强的鲁棒性.  相似文献   

10.
针对不确定机械系统中普遍存在的摩擦力,由于其非线性和不确定性,传统基于摩擦模型的补偿控制方法难以达到满意的系统性能要求.本文提出基于自适应区间二型(Type-2)模糊逻辑系统对系统摩擦进行补偿建模,并在该摩擦补偿方法的基础上设计出鲁棒自适应控制器,保证系统输出精度,且对摩擦环境的变化具有较强自适应性.区间二型模糊逻辑系统相对于传统一型模糊逻辑系统具有较强的处理不确定性问题的能力,在本文中使用自适应区间二型模糊逻辑系统不断逼近摩擦力,根据李雅普诺夫稳定性理论求出自适应律并证明系统跟踪误差的有界性.在不同摩擦环境下的仿真结果验证了本文所提摩擦建模方法与控制策略的有效性与实用性.  相似文献   

11.
In order to improve the control accuracy and stability of opto-electronic tracking system fixed on reef or airport under friction and external disturbance conditions, adaptive integral backstepping sliding mode control approach with friction compensation is developed to achieve accurate and stable tracking for fast moving target. The nonlinear observer and slide mode controller based on modified LuGre model with friction compensation can effectively reduce the influence of nonlinear friction and disturbance of this servo system. The stability of the closed-loop system is guaranteed by Lyapunov theory. The steady-state error of the system is eliminated by integral action. The adaptive integral backstepping sliding mode controller and its performance are validated by a nonlinear modified LuGre dynamic model of the opto-electronic tracking system in simulation and practical experiments. The experiment results demonstrate that the proposed controller can effectively realise the accuracy and stability control of opto-electronic tracking system.  相似文献   

12.
Because friction is a phenomenon that is present in the vast majority of mechanical systems producing some unwanted effects such as tracking errors, limit cycles, and stick‐slip motion, friction model based compensation has been previously proposed. We present a simple adaptive friction compensator, developed from a simple friction model, that achieves the control objective (friction compensation). This simple model was effectively used to obtain a friction compensator with smooth terms avoiding the use of signum and absolute functions presented in previously reported works on friction compensation. Considering that the velocity is bound away from zero and using Lyapunov stability analysis, exponential stability of the closed loop system is shown; i.e., the tracking errors and the parameter estimation error converge exponentially to zero. Because our friction compensator is based on a simple friction model, numerical experiments using a more representative friction model are given to support our theoretical findings.  相似文献   

13.
This paper develops an effective identification and compensation mechanism for the disturbance‐like parametric friction of a typical underactuated tractor‐trailer vehicle system. To begin with, a parametric friction model is proposed to describe various friction effects associated with the system velocity, and then a disturbance‐like parametric friction concept is introduced by considering the motion characteristics of tractor‐trailer vehicle. Next, the radial basis function neural network (RBFNN) is employed to identify the friction due to its high convergence rate, superior approximation precision and local‐minima avoidance ability. Afterwards, a sliding mode control (SMC) is utilized to compensate the identified friction due to its numerous merits, such as strong robustness and fast convergence. On the basis of the effective combination of identification and compensation mechanism, a favorable transient performance can be achieved during the desired velocity tracking process. Lastly, the simulation results confirm that the RBFNN‐based disturbance‐like parametric friction identification and compensation mechanism can effectively improve the trajectory tracking performance of tractor‐trailer vehicle.  相似文献   

14.
Friction compensation for a benchmark system with load friction plus joint flexibility and damping is addressed. This is a problem of controlling a sandwich dynamic system with a non-smooth nonlinearity. Several non-adaptive and adaptive compensation designs are analyzed, based on a state feedback output tracking model reference adaptive control scheme. Sufficient output matching conditions are derived for friction compensation. Approximate linear parametrizations of nonlinear friction are developed for adaptive friction compensator designs. Simulation results verify the desired system performance.  相似文献   

15.
伺服系统的神经网络摩擦力自适应补偿研究   总被引:1,自引:0,他引:1  
张媚  李秀娟 《计算机仿真》2003,20(12):70-73
在高精度伺服系统中,摩擦力是影响其低速性能的关键因素。该文分析了摩擦力的特性、数学模型、及其对伺服系统性能的影响,提出了基于RBF网络的自适应摩擦力补偿方法,并将其与参数线性化模型相比较。在某单轴速率/位置转台的控制系统中的应用结果表明,该方法能有效地改善伺服系统的性能。  相似文献   

16.
针对静态摩擦力对数控机床直流伺服系统的干扰问题,提出了一种先利用遗传算法对静态摩擦模型中的参数进行辨识,然后采用基于摩擦模型补偿的伺服控制方法。该方法首先根据直流伺服系统的摩擦特性建立摩擦模型,再将摩擦补偿引入到直流伺服系统的反馈控制结构中,获取伺服电机的位置误差。采用遗传算法对摩擦补偿模型进行参数辨识,使摩擦补偿量在数值上不断逼近实际的摩擦干扰,并利用摩擦补偿量来抵消摩擦给伺服系统带来的影响。为了验证参数辨识的效果,将普通PD控制与基于摩擦补偿的PD控制进行了仿真比较,实验结果表明,后者能够消除由于静摩擦的存在而造成的位置跟踪中出现的平顶现象,能够达到理想的跟踪效果。因此,本文所提出的方法具有较强的摩擦干扰补偿能力,能够实现对直流伺服系统的精确控制。  相似文献   

17.
An exponentially stable adaptive friction compensator   总被引:1,自引:0,他引:1  
This note presents a novel adaptive compensation scheme for Coulomb friction in a servocontrol system. An adaptive observer for estimating the unknown Coulomb friction coefficient is also derived on the basis of the Lyapunov technique. In addition, a linearizing control law is developed to compensate for the friction force and obtain the tracking objective. The proposed adaptive compensation guarantees an exponential convergence for state errors and parameter error, and known adaptive schemes guarantee only an asymptotic (or stable) convergence. Simulation results demonstrate the effectiveness of the proposed method for a single-mass servocontrol system  相似文献   

18.
19.
针对非线性摩擦对伺服系统性能的影响,常规PID控制法不能兼顾快速性和稳定性的需求,并且正弦跟踪存在“平顶”现象,基于Stribeck摩擦模型[2],采用了模糊控制补偿策略,通过matlab/Simulink仿真,仿真结果表明,与常规PID控制[1]相比,模糊控制具有较强的鲁棒性和抗干扰性能,能够很好地解决阶跃跟踪带来超调量大和正弦跟踪带来的跟踪误差等问题,对伺服系统工程具有实际应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号