首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 333 毫秒
1.
目的 高效的肝肿瘤计算机断层扫描(computed tomography,CT)图像自动分割方法是临床实践的迫切需求,但由于肝肿瘤边界不清晰、体积相对较小且位置无规律,要求分割模型能够细致准确地发掘类间差异。对此,本文提出一种基于特征选择与残差融合的2D肝肿瘤分割模型,提高了2D模型在肝肿瘤分割任务中的表现。方法 该模型通过注意力机制对U-Net瓶颈特征及跳跃链接进行优化,为符合肝肿瘤分割任务特点优化传统注意力模块进,提出以全局特征压缩操作(global feature squeeze,GFS)为基础的瓶颈特征选择模块,即全局特征选择模块(feature selection module,FS)和邻近特征选择模块(neighbor feature selection module,NFS)。跳跃链接先通过空间注意力模块(spatial attention module,SAM)进行特征重标定,再通过空间特征残差融合(spatial feature residual fusion module,SFRF)模块解决前后空间特征的语义不匹配问题,在保持低复杂度的同时使特征高效表达。结果 在LiTS (liver tumor segmentation)公开数据集上进行组件消融测试并与当前方法进行对比测试,在肝脏及肝肿瘤分割任务中的平均Dice得分分别为96.2%和68.4%,与部分2.5D和3D模型的效果相当,比当前最佳的2D肝肿瘤分割模型平均Dice得分高0.8%。结论 提出的FSF-U-Net (feature selection and residual fusion U-Net)模型通过改进的注意力机制与优化U-Net模型结构的方法,使2D肝肿瘤分割的结果更加准确。  相似文献   

2.
目的 腺体医学图像分割是将医学图像中的腺体区域与周围组织分离出来的过程,对分割精度有极高要求。传统模型在对腺体医学图像分割时,因腺体形态多样性和小目标众多的特点,容易出现分割不精细或误分割等问题,对此根据腺体医学图像的特点对U-Net型通道变换网络分割模型进行改进,实现对腺体图像更高精度分割。方法 首先在U-Net型通道变换网络的编码器前端加入ASPP_SE (spatial pyramid pooling_squeeze-and-excitation networks)模块与ConvBatchNorm模块的组合,在增强编码器提取小目标特征信息能力的同时,防止模型训练出现过拟合现象。其次在编码器与跳跃连接中嵌入简化后的密集连接,增强编码器相邻模块特征信息融合。最后在通道融合变换器(channel cross fusion with Transformer,CCT)中加入细化器,将自注意力图投射到更高维度,提高自注意机制能力,增强编码器全局模块特征信息融合。简化后的密集连接与CCT结合使用,模型可以达到更好效果。结果 改进算法在公开腺体数据集MoNuSeg (multi-organ nuclei segmentation challenge)和Glas (gland segmentation)上进行实验。以Dice系数和IoU (intersection over union)系数为主要指标,在MoNuSeg的结果为80.55%和67.32%,在Glas数据集的结果为92.23%和86.39%,比原U-Net型通道变换网络分别提升了0.88%、1.06%和1.53%、2.43%。结论 本文提出的改进算法在腺体医学分割上优于其他现有分割算法,能满足临床医学腺体图像分割要求。  相似文献   

3.
目的 海马体内嗅皮层的像素体积较小,这些特征给医学影像的分割任务带来很大挑战。综合海马体的形态特点以及医生的分割流程,提出一种新的海马体分割方法,以实现在临床医学影像处理中对海马体的精确分割,辅助阿尔兹海默症的早期诊断。方法 提出一个基于自注意力机制与空间注意力机制的U型网络模型SA-TF-UNet (hippocampus segmentation network based on Transformer and spatial attention mechanisms)。该网络为端到端的预测网络,输入任意大小的3维MRI (magnetic resonance imaging)影像,输出类别标签。SA-TF-UNet采用编码器—解码器结构,编码器采用纯Transformer模块,不包含卷积模块。多头自注意力机制为Transformer模块中的特征提取器,自注意力模块基于全局信息建模,并提取特征。因此,使用Transformer提取特征符合医生分割海马体的基本思路。解码器采用简单的卷积模块进行上采样。使用AG (attention gate)模块作为跳跃连接的方式,自动增加前景的权重,代替了传统网络中的直接连接。为了验证AG的有效性,分别做了只在单层加入AG的实验,与在4层网络中全部加入AG的实验结果进行对比。为了进一步探讨AG模块中门控信号的来源,设计了两个SA-TF-UNet的变体,它们的网络结构中AG门控信号分别为比AG中的特征图深两层的Transformer模块输出和深3层的Transformer模块输出。结果 为了验证SA-TF-UNet在临床数据集中分割海马体的有效性,在由阿尔兹海默症患者的MRI影像组成的脑MRI数据集上进行实验。4层网络全部加入AG,且AG的门控信号是由比AG特征图更深一层的Transformer模块输出的SA-TF-UNet模型分割效果最好。SA-TF-UNet对于左海马体、右海马体的分割Dice系数分别为0.900 1与0.909 1,相较于对比的语义分割网络有显著提升,Dice系数提升分别为2.82%与3.43%。结论 加入空间注意力机制的以纯Transformer模块为编码器的分割网络有效提升了脑部MRI海马体的分割精度。  相似文献   

4.
目的 胆管癌高光谱图像的光谱波段丰富但存在冗余,造成基于深度神经网络高光谱图像分割方法的分割精度下降,虽然一些基于通道注意力机制的网络能够关注重要通道,但在处理通道特征时存在信息表示不足问题,因此本文研究构建一种新的通道注意力机制深度网络,以提高分割准确性。方法 提出了傅里叶变换多频率通道注意力机制(frequency selecting channel attention,FSCA)。FSCA对输入特征进行2维傅里叶变换,提取部分频率特征,再通过两层全连接层得到通道权重向量,将通道权重与对应通道特征相乘,获得了融合通道注意力信息的输出。针对患癌区域和无癌区域数据不平衡问题引入了Focal损失,结合Inception模块,构建基于Inception-FSCA的胆管癌高光谱图像分割网络。结果 在采集的胆管癌高光谱数据集上进行实验,Inception-FSCA网络的准确率(accuracy)、精度(precision)、敏感性(sensitivity)、特异性(specificity)、Kappa系数分别为0.978 0、0.965 4、0.958 6、0.985 2、0.945 6,优于另外5种对比方法。与合成的假彩色图像的分割结果相比,高光谱图像上的实验指标分别提高了0.058 4、0.105 8、0.087 5、0.039 0、0.149 3。结论 本文所提出的傅里叶变换多频率通道注意力机制能够更有效地利用通道信息,基于Inception-FSCA的胆管癌高光谱图像分割网络能够提升分割效果,在胆管癌医学辅助诊断方面具有研究和应用价值。  相似文献   

5.
目的 脊椎CT(computed tomography)图像存在组织结构显示不佳、对比度差以及噪音干扰等问题;传统分割算法分割精度低,分割过程需人工干预,往往只能实现半自动分割,不能满足实时分割需求。基于卷积神经网络(convolutional neural network,CNN)的U-Net模型成为医学图像分割标准,但仍存在长距离交互受限的问题。Transformer集成全局自注意力机制,可捕获长距离的特征依赖,在计算机视觉领域表现出巨大优势。本文提出一种CNN与Transformer混合分割模型TransAGUNet (Transformer attention gate U-Net),以实现对脊椎CT图像的高效自动化分割。方法 提出的模型将Transformer、注意力门控机制(attention gate,AG)及U-Net相结合构成编码—解码结构。编码器使用Transformer和CNN混合架构,提取局部及全局特征;解码器使用CNN架构,在跳跃连接部分融入AG,将下采样特征图对应的注意力图(attention map)与下一层上采样后获得的特征图进行拼接,融合低层与高层特征从而实现更精细的分割。实验使用Dice Loss与带权重的交叉熵之和作为损失函数,以解决正负样本分布不均的问题。结果 将提出的算法在VerSe2020数据集上进行测试,Dice系数较主流的CNN分割模型U-Net、Attention U-Net、U-Net++和U-Net3+分别提升了4.47%、2.09%、2.44%和2.23%,相较优秀的Transformer与CNN混合分割模型TransUNet和TransNorm分别提升了2.25%和1.08%。结论 本文算法较以上6种分割模型在脊椎CT图像的分割性能最优,有效地提升了脊椎CT图像的分割精度,分割实时性较好。  相似文献   

6.
目的 超声弹性成像技术已逐步应用于支气管淋巴结良恶性的诊断,帮助确定肺癌分期。在支气管超声弹性图像中,淋巴结区域的精确定位对诊断准确度具有重要影响,但通常依赖专业医师的手动分割,费时费力。为此,本文设计了一种注意力上下文编码器网络(attention context encoder network,ACE-Net)。方法 本文网络模型包括编码器、上下文提取器和解码器3部分。使用在ImageNet数据集上预训练且去掉平均池化层和全连接层的34层残差网络ResNet-34作为编码器提取特征,上下文提取器从编码器的输出中进一步提取高级语义信息,同时保留尽可能多的空间信息,基于AG (attention gate)的解码器可以抑制输入图像中的不相关区域,同时突出对当前任务更关键的特征。结果 实验在本文收集的包含支气管超声弹性图像及对应分割标签的数据集上进行,与6种典型的U-Net结构深度网络模型的分割性能进行对比,数据集中的每幅图像中的淋巴结都由专业医师手动分割标注。基础U-Net网络得到淋巴结分割结果的Dice系数、敏感度和特异度分别为0.820 7、85.08%和96.82%,其他改进网络的分割性能在此基础上均有一定提高,本文方法的Dice系数、敏感度和特异度分别为0.845 1、87.92%和97.04%,Dice系数和敏感度在所有方法中取得了最优值,特异度取得了次优值。结论 以U-Net为代表的深度学习模型在支气管超声弹性图像淋巴结分割问题中具有很大潜力,将上下文提取器和注意力机制融入U-Net网络可以一定程度提升分割精度。本文收集的数据集将有助于推动支气管超声弹性图像淋巴结分割问题的研究。  相似文献   

7.
目的 脑肿瘤核磁共振(magnetic resonance,MR)图像分割对评估病情和治疗患者具有重要意义。虽然深度卷积网络在医学图像分割中取得了良好表现,但由于脑胶质瘤的恶性程度与外观表现有巨大差异,脑肿瘤MR图像分割仍是一项巨大挑战。图像语义分割的精度取决于图像特征的提取和处理效果。传统的U-Net网络以一种低效的拼接方式集成高层次特征和低层次特征,从而导致图像有效信息丢失,此外还存在未能充分利用上下文信息和空间信息的问题。对此,本文提出一种基于注意力机制和多视角融合U-Net算法,实现脑肿瘤MR图像的分割。方法 在U-Net的解码和编码模块之间用多尺度特征融合模块代替传统的卷积层,进行多尺度特征映射的提取与融合;在解码模块的级联结构中添加注意力机制,增加有效信息的权重,避免信息冗余;通过融合多个视角训练的模型引入3维图像的空间信息。结果 提出的模型在BraTS18(Multimodal Brain Tumor Segmentation Challenge 2018)提供的脑肿瘤MR图像数据集上进行验证,在肿瘤整体区域、肿瘤核心区域和肿瘤增强区域的Dice score分别为0.907、0.838和0.819,与其他方法进行对比,较次优方法分别提升了0.9%、1.3%和0.6%。结论 本文方法改进了传统U-Net网络提取和利用图像语义特征不足的问题,并引入了3维MR图像的空间信息,使得肿瘤分割结果更加准确,具有良好的研究和应用价值。  相似文献   

8.
目的 支气管超声弹性成像具有丰富的通道语义信息,精准的分割纵膈淋巴结对诊断肺癌是否转移具有重要意义,也对癌症的分期和治疗有着重要作用。目前,超声弹性图像分割研究较少,没有充分挖掘图像通道特征之间的关系。因此,提出一种结合注意力机制的多尺度融合增强的纵膈淋巴结超声弹性图像分割U-Net (attention-based multi-scale fusion enhanced ultrasound elastic images segmentation network for mediastinal lymph node,AMFE-UNet)。方法 首先,考虑到图像可以提供纵膈淋巴结的位置和通道信息,设计密集卷积网络(dense convolutional network,DenseNet)作为模型编码器;其次,结合注意力机制和空洞卷积设计多尺度融合增强解码器,从多尺度和范围对结节的边界和纹理进行建模;最后,用选择性内核网络设计跳跃连接,将编码器的中间特征与解码器的输出特征充分融合。根据解码器特征进行数值或通道融合的方式不同,将AMFE-UNet分为A和B两个子型。结果 在超声弹性图像数据集上进行对比实验与验证。结果表明AMFE-UNet平均Dice系数达到86.593%,较U-Net提升了1.986%;相较于对比模型,AMFE-UNet A在Dice、精确度和特异度指标上均达到了最优;AMFE-UNet B在交并比、灵敏度和豪斯多夫距离指标上也达到最优。消融实验和可视化分析表明提出的改进方法具有明显的提升效果。结论 本文通过密集卷积网络设计分割模型编码器,并利用通道注意力机制优化模型特征恢复和连接过程,在超声弹性图像中获得了良好的纵膈淋巴结分割效果,具有较高的临床应用价值。代码链接:https://github.com/Philo-github/AMFE-UNet。  相似文献   

9.
针对骨骼CT图像对比度较低、特征不明显、现有算法对骨骼特征提取不充分的问题, 本文提出了一种基于U-Net的改进网络来实现骨骼数据的精确分割. 在网络编码阶段, 使用密集连接的空洞卷积模块加强骨骼特征的提取; 在网络解码阶段, 使用结合注意力机制的融合模块充分利用空间信息与语义信息, 改善骨骼信息丢失的问题. 改进算法在人体下肢骨骼CT数据集中Dice系数达89.44%, IoU系数达80.55%. 与U-Net模型相比, Dice系数提高了5.1%, IoU系数提高了7.63%. 实验结果表明, 提出的优化算法对下肢骨骼CT图像可以达到精确分割的效果, 对骨科疾病的治疗与术前规划提供了参考.  相似文献   

10.
目的 针对自然场景下图像语义分割易受物体自身形状多样性、距离和光照等因素影响的问题,本文提出一种新的基于条形池化与通道注意力机制的双分支语义分割网络(strip pooling and channel attention net,SPCANet)。方法 SPCANet从空间与内容两方面对图像特征进行抽取。首先,空间感知子网引入1维膨胀卷积与多尺度思想对条形池化技术进行优化改进,进一步在编码阶段增大水平与竖直方向上的感受野;其次,为了提升模型的内容感知能力,将在ImageNet数据集上预训练好的VGG16(Visual Geometry Group 16-layer network)作为内容感知子网,以辅助空间感知子网优化语义分割的嵌入特征,改善空间感知子网造成的图像细节信息缺失问题。此外,使用二阶通道注意力进一步优化网络中间层与高层的特征选择,并在一定程度上缓解光照产生的色差对分割结果的影响。结果 使用Cityscapes作为实验数据,将本文方法与其他基于深度神经网络的分割方法进行对比,并从可视化效果和评测指标两方面进行分析。SPCANet在目标分割指标mIoU(mean intersection over union)上提升了1.2%。结论 提出的双分支语义分割网络利用改进的条形池化技术、内容感知辅助网络和通道注意力机制对图像语义分割进行优化,对实验结果的提升起到了积极作用。  相似文献   

11.
目的 病理组织切片检查是诊断胃癌的金标准,准确发现切片中的病变区域有助于及时确诊并开展后续治疗。然而,由于病理切片图像的复杂性、病变细胞与正常细胞形态差异过小等问题,传统的语义分割模型并不能达到理想的分割效果。基于此,本文提出了一种针对病理切片的语义分割方法ADEU-Net (attention-dilated-efficient U-Net++),提高胃癌区域分割的精度,实现端到端分割。方法 ADEU-Net使用经过迁移学习的EfficientNet作为编码器部分,增强图像特征提取能力。解码器采用了简化的U-Net++短连接方式,促进深浅层特征融合的同时减少网络参数量,并重新设计了其中的卷积模块提高梯度传递能力。中心模块使用空洞卷积对编码器输出结果进行多尺度的特征提取,增强模型对不同尺寸切片的鲁棒性。编码器与解码器的跳跃连接使用了注意力模块,以抑制背景信息的特征响应。结果 在2020年“华录杯”江苏大数据开发与应用大赛(简称“SEED”大赛)数据集中与其他经典方法比较,验证了一些经典模型在该分割任务中难以拟合的问题,同时实验得出修改特征提取方式对结果有较大提升,本文方法在分割准确度上比原始U-Net提高了18.96%。在SEED数据集与2017年中国大数据人工智能创新创业大赛(brain of things,BOT)数据集中进行了消融实验,验证了本文方法中各个模块均有助于提高病理切片的分割效果。在SEED数据集中,本文方法ADEU-Net比基准模型在Dice系数、准确度、敏感度和精确度上分别提升了5.17%、2.7%、3.69%、4.08%;在BOT数据集中,本文方法的4项指标分别提升了0.47%、0.06%、4.30%、6.08%。结论 提出的ADEU-Net提升了胃癌病理切片病灶点分割的精度,同时具有良好的泛化性能。  相似文献   

12.
为了精确地从X线图像中分割脊柱,提出了一种基于深度学习的脊柱X线图像分割方法,使用基于多尺度特征融合的U-Net网络进行分割。将U-Net模型中的卷积层替换成类Inception网络来提取不同尺度的特征,并进行多尺度融合。同时在跳跃连接前增加残差连接层,并在首次上采样前添加卷积块注意力模块。该模型对20幅脊柱X线图像进行验证,Dice系数为0.845 7,与近期X线脊柱图像分割方法相比,提高了0.135 1。  相似文献   

13.
针对脊椎CT、MR图像分割模型分割性能不高的问题,基于U型网络提出了脊椎分割网络MAU-Net。首先引入坐标注意力模块,使网络准确捕获到空间位置信息,并嵌入到通道注意力中;然后提出基于Transformer的双支路通道交叉融合模块代替跳跃连接,进行多尺度特征融合;最后提出特征融合注意力模块,更好地融合Transformer与卷积解码器的语义差异。在脊柱侧凸CT数据集上,Dice达到0.929 6,IoU达到0.859 7。在公开MR数据集SpineSagT2Wdataset3上,与FCN相比,Dice提高14.46%。实验结果表明,MAU-Net能够有效减少椎骨误分割区域。  相似文献   

14.
目的 卷积神经网络(convolutional neural network,CNN)在计算机辅助诊断(computer-aided diagnosis,CAD)肺部疾病方面具有广泛的应用,其主要工作在于肺部实质的分割、肺结节检测以及病变分析,而肺实质的精确分割是肺结节检出和肺部疾病诊断的关键。因此,为了更好地适应计算机辅助诊断系统要求,提出一种融合注意力机制和密集空洞卷积的具有编码—解码模式的卷积神经网络,进行肺部分割。方法 将注意力机制引入网络的解码部分,通过增大关键信息权重以突出目标区域抑制背景像素干扰。为了获取更广更深的语义信息,将密集空洞卷积模块部署在网络中间,该模块集合了Inception、残差结构以及多尺度空洞卷积的优点,在不引起梯度爆炸和梯度消失的情况下,获得了更深层次的特征信息。针对分割网络常见的特征丢失等问题,对网络中的上/下采样模块进行改进,利用多个不同尺度的卷积核级联加宽网络,有效避免了特征丢失。结果 在LUNA (lung nodule analysis)数据集上与现有5种主流分割网络进行比较实验和消融实验,结果表明,本文模型得到的预测图更接近于标签图像。Dice相似系数、交并比(intersection over union,IoU)、准确度(accuracy,ACC)以及敏感度(sensitivity,SE)等评价指标均优于对比方法,相比于性能第2的模型,分别提高了0.443%,0.272%,0.512%以及0.374%。结论 本文提出了一种融合注意力机制与密集空洞卷积的肺部分割网络,相对于其他分割网络取得了更好的分割效果。  相似文献   

15.
随着卷积神经网络的发展,现有改进的息肉分割U-Net网络能有效提高息肉分割准确率,但引入了大量参数,导致模型复杂度增大且计算效率降低。提出具有低复杂度、高性能的网络GLIA-Net,用于分割内窥镜图像中的息肉区域。以U-Net为基础架构,在双层卷积后加入全局与局部交互式注意力融合模块。全局注意力基于2个可学习的外部储存器,通过2个级联的线性层和归一化层来实现。局部注意力基于局部跨通道交互策略,将一维卷积代替全连接层,在保证网络性能的同时降低计算复杂度,加快网络的计算速度。结合高效通道注意力和外部注意力的优点,在不引入过多参数量和计算量的前提下融合局部注意力和全局注意力,同时在通道与空间2个维度上引入注意力机制,提取丰富的多尺度语义信息。在Kvasir数据集上的实验结果表明,GLIA-Net的平均交并比、Dice、体积重叠误差分别为69.4%、80.7%和5.0%,与ExfuseNet、SegNet、ResUNet等网络相比,在保证网络计算效率的同时具有较优的分割精度。  相似文献   

16.
目的 卷积神经网络结合U-Net架构的深度学习方法广泛应用于各种医学图像处理中,取得了良好的效果,特别是在局部特征提取上表现出色,但由于卷积操作本身固有的局部性,导致其在全局信息获取上表现不佳。而基于Transformer的方法具有较好的全局建模能力,但在局部特征提取方面不如卷积神经网络。为充分融合两种方法各自的优点,提出一种基于分组注意力的医学图像分割模型(medical image segmentation module based on group attention,GAU-Net)。方法 利用注意力机制,设计了一个同时集成了Swin Transformer和卷积神经网络的分组注意力模块,并嵌入网络编码器中,使网络能够高效地对图像的全局和局部重要特征进行提取和融合;在注意力计算方式上,通过特征分组的方式,在同一尺度特征内,同时进行不同的注意力计算,进一步提高网络提取语义信息的多样性;将提取的特征通过上采样恢复到原图尺寸,进行像素分类,得到最终的分割结果。结果 在Synapse多器官分割数据集和ACDC (automated cardiac diagnosis challenge)数据集上进行了相关实验验证。在Synapse数据集中,Dice值为82.93%,HD(Hausdorff distance)值为12.32%,相较于排名第2的方法,Dice值提高了0.97%,HD值降低了5.88%;在ACDC数据集中,Dice值为91.34%,相较于排名第2的方法提高了0.48%。结论 本文提出的医学图像分割模型有效地融合了Transformer和卷积神经网络各自的优势,提高了医学图像分割结果的精确度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号