首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 584 毫秒
1.
An assessment of the black ocean pixel assumption for MODIS SWIR bands   总被引:2,自引:0,他引:2  
Recent studies show that an atmospheric correction algorithm using shortwave infrared (SWIR) bands improves satellite-derived ocean color products in turbid coastal waters. In this paper, the black pixel assumption (i.e., zero water-leaving radiance contribution) over the ocean for the Moderate Resolution Imaging Spectroradiometer (MODIS) SWIR bands at 1240, 1640, and 2130 nm is assessed for various coastal ocean regions. The black pixel assumption is found to be generally valid with the MODIS SWIR bands at 1640 and 2130 nm even for extremely turbid waters. For the MODIS 1240 nm band, however, ocean radiance contribution is generally negligible in mildly turbid waters such as regions along the U.S. east coast, while some slight radiance contributions are observed in extremely turbid waters, e.g., some regions along the China east coast, the estuary of the La Plata River. Particularly, in the Hangzhou Bay, the ocean radiance contribution at the SWIR band 1240 nm results in an overcorrection of atmospheric and surface effects, leading to errors of MODIS-derived normalized water-leaving radiance at the blue reaching ~ 0.5 mW cm− 2 μm− 1 sr− 1. In addition, we found that, for non-extremely turbid waters, i.e., the ocean contribution at the near-infrared (NIR) band < ~ 1.0 mW cm− 2 μm− 1 sr− 1, there exists a good relationship in the regional normalized water-leaving radiances between the red and the NIR bands. Thus, for non-extremely turbid waters, such a red-NIR radiance relationship derived regionally can possibly be used for making corrections for the regional NIR ocean contributions without using the SWIR bands, e.g., for atmospheric correction of ocean color products derived from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS).  相似文献   

2.
Mapping of total suspended matter concentration (TSM) can be achieved from space-based optical sensors and has growing applications related to sediment transport. A TSM algorithm is developed here for turbid waters, suitable for any ocean colour sensor including MERIS, MODIS and SeaWiFS. Theory shows that use of a single band provides a robust and TSM-sensitive algorithm provided the band is chosen appropriately. Hyperspectral calibration is made using seaborne TSM and reflectance spectra collected in the southern North Sea. Two versions of the algorithm are considered: one which gives directly TSM from reflectance, the other uses the reflectance model of Park and Ruddick (2005) to take account of bidirectional effects.Applying a non-linear regression analysis to the calibration data set gave relative errors in TSM estimation less than 30% in the spectral range 670-750 nm. Validation of this algorithm for MODIS and MERIS retrieved reflectances with concurrent in situ measurements gave the lowest relative errors in TSM estimates, less than 40%, for MODIS bands 667 nm and 678 nm and for MERIS bands 665 nm and 681 nm. Consistency of the approach in a multisensor context (SeaWiFS, MERIS, and MODIS) is demonstrated both for single point time series and for individual images.  相似文献   

3.
Accurate remote assessment of phytoplankton chlorophyll a (chla) concentration is particularly challenging in turbid, productive waters. Recently a conceptual model containing reflectance in three spectral bands in the red and near infra-red range of the spectrum was suggested for retrieving chla concentrations in turbid productive waters; it was calibrated and validated in lakes and reservoirs in Nebraska and Iowa. The objective of this paper is to evaluate the performance of this three band model as well as its special case, the two-band model to estimate chla concentration in Chesapeake Bay, as representative of estuarine Case II waters, and to assess the accuracy of chla retrieval. To evaluate the model performance, dual spectroradiometers were used to measure subsurface spectral radiance reflectance in the visible and near infra-red range of the spectrum. Water samples were collected concurrently and contained widely variable chla (9 to 77.4 mg/m3) and total suspended solids (7-65 mg/L dry wt). Colored dissolved organic matter (CDOM) absorption at 440 nm was 0.20 to 2.50 m− 1; Secchi disk transparency ranged from 0.28 to 1.5 m. The two- and three-band models were spectrally tuned to select the spectral bands for most accurate chla estimation. Strong linear relationships were established between analytically measured chla and both the three-band model [R− 1(675)-R− 1(695)] × R(730) and the two-band model R(720)/R(670), where R(λ) is reflectance at wavelength λ. The three-band model accounted for 81% of variation in chla and allowed estimation of chla with a root mean square error (RMSE) of less than 7.9 mg/m3, whereas the two-band model accounted for 79% of chla variability and RMSE of chla estimation was below 8.4 mg/m3. The three-band model with MERIS spectral bands allows accurate chla estimation with RMSE below 9.1 mg/m3. Two-band model with SeaWiFS bands and MODIS 667 nm and 748 nm bands can estimate chla with RMSE below 11 mg/m3. The findings underlined the rationale behind the conceptual model and demonstrated the robustness of this algorithm for chla retrieval in turbid, productive estuarine waters.  相似文献   

4.
The optical properties of natural waters beyond the visible range, in the near-infrared (NIR, 700-900 nm), have received little attention because they are often assumed to be mostly determined by the large absorption coefficient of pure water, and because of methodological difficulties. It is now growingly admitted that the NIR represents a potential optical source of unambiguous information about suspended sediments in turbid waters, thence the need for better understanding the NIR optical behaviour of such waters. It has recently been proposed (Ruddick et al., Limnology and Oceanography. 51, 1167-1179, 2006) that the variability in the shape of the surface ocean reflectance spectrum in the NIR is negligible in turbid waters. In the present study, we show, based on both in situ and remote sensing data, that the shape of the ocean reflectance spectrum in the NIR does vary in turbid to extremely turbid waters. Space-borne ocean reflectance data were collected using 3 different sensors (SeaWiFS, MODIS/Aqua and MERIS) over the Amazon, Mackenzie and Rio de la Plata turbid river plumes during extremely clear atmospheric conditions so that reliable removal of gas and aerosol effects on reflectance could be achieved. In situ NIR reflectance data were collected in different European estuaries where extremely turbid waters were found. In both data sets, a flattening of the NIR reflectance spectrum with increasing turbidity was observed. The ratio of reflectances at 765 nm and 865 nm, for instance, varied from ca. 2 down to 1 in our in situ data set, while a constant value of 1.61 had been proposed based on theory in a previous study. Radiative transfer calculations were performed using a range of realistic values for the seawater inherent optical properties, to determine the possible causes of variations in the shape of the NIR reflectance spectrum. Based on these simulations, we found that the most significant one was the gradual increase in the contribution of suspended sediments to the color of surface waters, which often leads to the flattening of the reflectance spectrum. Changes in the scattering and absorption properties of particles also contributed to variations in the shape of the NIR surface ocean reflectance spectrum. The impact of such variations on the interpretation of ocean color data is discussed.  相似文献   

5.
The study presents and discusses the application of in situ data from the ocean color component of the Aerosol Robotic Network (AERONET-OC) to assess primary remote sensing products from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the AQUA platform and from the Sea-viewing Wide-Field-of-view Sensor (SeaWiFS) on the OrbView-2 spacecraft. Three AERONET-OC European coastal sites exhibiting different atmospheric and marine optical properties were considered for the study: the Acqua Alta Oceanographic Tower (AAOT) in the northern Adriatic Sea representing Case-1 and Case-2 moderately sediment dominated waters; and, the Gustaf Dalen Lighthouse Tower (GDLT) in the northern Baltic Proper and the Helsinki Lighthouse Tower (HLT) in the Gulf of Finland, both characterized by Case-2 waters dominated by colored dissolved organic matter (CDOM). The analysis of MODIS derived normalized water-leaving radiance at 551 nm, LWN(551), has shown relatively good results for all sites with uncertainties of the order of 10% and biases ranging from − 1 to − 4%. Larger uncertainty and bias have been observed at 443 nm for the AAOT (i.e., 18 and − 7%, respectively). At the same center wavelength, results for GDLT and HLT have exhibited much larger uncertainties (i.e., 56 and 67%, respectively) and biases (i.e., 18 and 25%, respectively), which undermine the possibility of presently using remote sensing LWN data at the blue center wavelengths for bio-optical investigations in the Baltic Sea. An evaluation of satellite derived aerosol optical thickness, τa, has shown uncertainties and biases of the order of tens of percent increasing with wavelength at all sites. Specifically, MODIS derived τa at 869 nm has shown an overestimate of 71% at the AAOT, 101% at GDLT and 91% at HLT, respectively. This result highlights the effects of a limited number of aerosol models for the atmospheric correction process, and might also indicate the need of applying a vicarious calibration factor to the remote sensing data at the 869 nm center wavelength to remove the effects of uncertainties in the atmospheric optical model and the space sensor radiometric calibration. Similar results have been obtained from the analysis of SeaWiFS data. Finally, in view of illustrating the possibility of increasing the accuracy of satellite regional radiometric products, AERONET-OC data have been applied to reduce systematic errors in MODIS and Medium Resolution Imaging Spectrometer (MERIS) LWN data likely due to the atmospheric correction process. Results relying on MODIS match-ups for the Baltic Sites (i.e., GDLT and HLT) and MERIS matchups for the AAOT, have indicated a substantial reduction of both uncertainty and bias in the blue and red center wavelengths.  相似文献   

6.
Today the water quality of many inland and coastal waters is compromised by cultural eutrophication in consequence of increased human agricultural and industrial activities. Remote sensing is widely applied to monitor the trophic state of these waters. This study investigates the performance of near infrared-red models for the remote estimation of chlorophyll-a concentrations in turbid productive waters and evaluates several near infrared-red models developed within the last 34 years. Three models were calibrated for a dataset with chlorophyll-a concentrations from 0 to 100 mg m−3 and validated for independent and statistically different datasets with chlorophyll-a concentrations from 0 to 100 mg m−3 and 0 to 25 mg m−3 for the spectral bands of the MEdium Resolution Imaging Spectrometer (MERIS) and MODerate resolution Imaging Spectroradiometer (MODIS). The MERIS two-band model estimated chlorophyll-a concentrations slightly more accurately than the more complex models, with mean absolute errors of 2.3 mg m−3 for chlorophyll-a concentrations from 0 to 100 mg m−3 and 1.2 mg m−3 for chlorophyll-a concentrations from 0 to 25 mg m−3. Comparable results from several near infrared-red models with different levels of complexity, calibrated for inland and coastal waters around the world, indicate a high potential for the development of a simple universally applicable near infrared-red algorithm.  相似文献   

7.
The use of satellites to monitor the color of the ocean requires effective removal of the atmospheric signal. This can be performed by extrapolating the aerosol optical properties in the visible from the near-infrared (NIR) spectral region assuming that the seawater is totally absorbant in this latter part of the spectrum. However, the non-negligible water-leaving radiance in the NIR which is characteristic of turbid waters may lead to an overestimate of the atmospheric radiance in the whole visible spectrum with increasing severity at shorter wavelengths. This may result in significant errors, if not complete failure, of various algorithms for the retrieval of chlorophyll-a concentration, inherent optical properties and biogeochemical parameters of surface waters.This paper presents results of an inter-comparison study of three methods that compensate for NIR water-leaving radiances and that are based on very different hypothesis: 1) the standard SeaWiFS algorithm (Stumpf et al., 2003; Bailey et al., 2010) based on a bio-optical model and an iterative process; 2) the algorithm developed by Ruddick et al. (2000) based on the spatial homogeneity of the NIR ratios of the aerosol and water-leaving radiances; and 3) the algorithm of Kuchinke et al. (2009) based on a fully coupled atmosphere-ocean spectral optimization inversion. They are compared using normalized water-leaving radiance nLw in the visible. The reference source for comparison is ground-based measurements from three AERONET-Ocean Color sites, one in the Adriatic Sea and two in the East Coast of USA.Based on the matchup exercise, the best overall estimates of the nLw are obtained with the latest SeaWiFS standard algorithm version with relative error varying from 14.97% to 35.27% for λ = 490 nm and λ = 670 nm respectively. The least accurate estimates are given by the algorithm of Ruddick, the relative errors being between 16.36% and 42.92% for λ = 490 nm and λ = 412 nm, respectively. The algorithm of Kuchinke appears to be the most accurate algorithm at 412 nm (30.02%), 510 (15.54%) and 670 nm (32.32%) using its default optimization and bio-optical model coefficient settings.Similar conclusions are obtained for the aerosol optical properties (aerosol optical thickness τ(865) and the Ångström exponent, α(510, 865)). Those parameters are retrieved more accurately with the SeaWiFS standard algorithm (relative error of 33% and 54.15% for τ(865) and α(510, 865)).A detailed analysis of the hypotheses of the methods is given for explaining the differences between the algorithms. The determination of the aerosol parameters is critical for the algorithm of Ruddick et al. (2000) while the bio-optical model is critical for the algorithm of Stumpf et al. (2003) utilized in the standard SeaWiFS atmospheric correction and both aerosol and bio-optical model for the coupled atmospheric-ocean algorithm of Kuchinke. The Kuchinke algorithm presents model aerosol-size distributions that differ from real aerosol-size distribution pertaining to the measurements. In conclusion, the results show that for the given atmospheric and oceanic conditions of this study, the SeaWiFS atmospheric correction algorithm is most appropriate for estimating the marine and aerosol parameters in the given turbid waters regions.  相似文献   

8.
Accurate assessment of phytoplankton chlorophyll a (Chla) concentration in turbid waters by means of remote sensing is challenging due to optically complexity and significant variability of case 2 waters, especially in inland waters with multiple optical types. In this study, a water optical classification algorithm is developed, and two semi-analytical algorithms (three- and four-band algorithm) for estimating Chla are calibrated and validated using four independent datasets collected from Taihu Lake, Chaohu Lake, and Three Gorges Reservoir. The optical classification algorithm is developed using the dataset collected in Taihu Lake from 2006 to 2009. This dataset is also used to calibrate the three- and four-band Chla estimation algorithms. The optical classification technique uses remote sensing reflectance at three bands: Rrs(G), Rrs(650), and Rrs(NIR), where G indicates the location of reflectance peak in the green region (around 560 nm), and NIR is the location of reflectance peak in the near-infrared region (around 700 nm). Optimal reference wavelengths of the three- and four-band algorithm are located through model tuning and accuracy optimization. The three- and four-band algorithm accuracy is further evaluated using other three independent datasets. The improvement of optical classification in Chla estimation is revealed by comparing the performance of the two algorithms for non-classified and classified waters.Using the slopes of the three reflectance bands, the 138 reflectance spectra samples in the calibration dataset are classified into three classes, each with a specific spectral shape character. The three- and four-band algorithm performs well for both non-classified and classified waters in estimating Chla. For non-classified waters, strong relationships are yielded between measured and predicted Chla, but the performance of the two algorithms is not satisfactory in low Chla conditions, especially for samples with Chla below 30 mg m− 3. For classified waters, the class-specific algorithms perform better than for non-classified waters. Class-specific algorithms reduce considerable mean relative error from algorithms for non-classified waters in Chla predicting. Optical classification makes that there is no need to adjust the optimal position to estimate Chla for other waters using the class-specific algorithms. The findings in this study demonstrate that optical classification can greatly improve the accuracy of Chla estimation in optically complex waters.  相似文献   

9.
Near real-time data from the MODIS satellite sensor was used to detect and trace a harmful algal bloom (HAB), or red tide, in SW Florida coastal waters from October to December 2004. MODIS fluorescence line height (FLH in W m− 2 μm− 1 sr− 1) data showed the highest correlation with near-concurrent in situ chlorophyll-a concentration (Chl in mg m− 3). For Chl ranging between 0.4 to 4 mg m− 3 the ratio between MODIS FLH and in situ Chl is about 0.1 W m− 2 μm− 1 sr− 1 per mg m− 3 chlorophyll (Chl = 1.255 (FLH × 10)0.86, r = 0.92, n = 77). In contrast, the band-ratio chlorophyll product of either MODIS or SeaWiFS in this complex coastal environment provided false information. Errors in the satellite Chl data can be both negative and positive (3-15 times higher than in situ Chl) and these data are often inconsistent either spatially or temporally, due to interferences of other water constituents. The red tide that formed from November to December 2004 off SW Florida was revealed by MODIS FLH imagery, and was confirmed by field sampling to contain medium (104 to 105 cells L− 1) to high (> 105 cells L− 1) concentrations of the toxic dinoflagellate Karenia brevis. The FLH imagery also showed that the bloom started in mid-October south of Charlotte Harbor, and that it developed and moved to the south and southwest in the subsequent weeks. Despite some artifacts in the data and uncertainty caused by factors such as unknown fluorescence efficiency, our results show that the MODIS FLH data provide an unprecedented tool for research and managers to study and monitor algal blooms in coastal environments.  相似文献   

10.
Accurate estimation of phytoplankton chlorophyll a (Chla) concentration from remotely sensed data is particularly challenging in turbid, productive waters. The objectives of this study are to validate the applicability of a semi-analytical three-band algorithm in estimating Chla concentration in the highly turbid, widely variable waters of Taihu Lake, China, and to improve the algorithm using a proposed four-band algorithm. The improved algorithm is expressed as [Rrs(λ1)− 1 − Rrs(λ2)− 1][Rrs(λ4)− 1 − Rrs(λ3)− 1]− 1. The two semi-analytical algorithms are calibrated and evaluated against two independent datasets collected from 2007 and 2005 in Taihu Lake. Strong linear relationships were established between measured Chla concentration and that derived from the three-band algorithm of [Rrs− 1(660) − Rrs− 1(692)]Rrs(740) and the four-band algorithm of [Rrs− 1(662) − Rrs− 1(693)][Rrs− 1(740) − Rrs− 1(705)]− 1. The first algorithm accounts for 87% and 80% variation in Chla concentration in the 2007 and 2005 datasets, respectively. The second algorithm accounts for 97% of variability in Chla concentration for the 2007 dataset and 87% of variation in the 2005 dataset. The three-band algorithm has a mean relative error (MRE) of 43.9% and 34.7% for the 2007 and 2005 datasets. The corresponding figures for the four-band algorithm are 26.7% and 28.4%. This study demonstrates the potential of the four-band model in estimating Chla even in highly turbid case 2 waters.  相似文献   

11.
The validation of aerosol products derived from ocean color missions is required for the assessment of their uncertainties and as a diagnostic for the atmospheric correction schemes used for determining the ocean apparent optical properties. A comprehensive validation of the aerosol products obtained from the ocean color missions SeaWiFS and MODIS is presented; it relies on the field observations collected at 85 AERONET sites and is completed by preliminary results obtained with the data of the maritime AERONET component. A robust match-up selection protocol yields approximately 7000 match-ups for each sensor. The median absolute relative difference for the aerosol optical thickness τa increases from 20-22% at 443 nm to 45-48% in the near-infrared. The validation statistics are comparable for both sensors but MODIS results appear degraded particularly for sites located on isolated islands. The median absolute difference is approximately 0.03 at all wavelengths. Results are further analyzed for specific geographic regions or groups of sites selected to represent oceanic, continental, or desert dust conditions. Importantly, the match-up sets appear generally representative of the regional natural variability in τa amplitude and spectral shape, with the notable exception of high τa conditions that are excluded. An important finding is the underestimate by the atmospheric correction of the Ångström exponent α, with a median bias of − 0.52. This underestimate is apparent even at low α values and regularly increases with α. This discrepancy in τa spectral shape might result from an inappropriate set of candidate aerosol models and/or uncertainties in the calibration at the near-infrared bands. As the validation data base is expanded and updated in relation to new versions of the processing chains, this work provides a benchmark for the assessment of the aerosol products derived from the SeaWiFS and MODIS ocean color missions.  相似文献   

12.
Over the last few decades, the coastal regions throughout the world have experienced incidences of algal blooms, which are harmful or otherwise toxic because of their potential threat to humans as well as marine organisms, owing to accelerated eutrophication from human activities and certain oceanic processes. Previous studies have found that correct identification of these blooms remains a great challenge with the standard bio-optical algorithms applied to satellite ocean color data in optically complex coastal waters containing high concentrations of the interfered dissolved organic and particulate inorganic materials. Here a new method called the red tide index (RI) is presented which is capable of identifying potential areas of harmful algal blooms (HABs) from SeaWiFS ocean color measurements representing the typical Case-2 water environments off the Korean and Chinese coasts. The RI method employs the water-leaving radiances (Lw), collected from in-situ radiometric measurements of three SeaWiFS bands centered at 443 nm, 510 nm and 555 nm, to achieve derivation of indices that are then related to absorbing characteristics of harmful algae (i.e., Lw at 443 nm) from which a best fit with a cubic polynomial function with correlation coefficient of R2 = 0.91 is obtained providing indices of higher ranges for HABs and lower and slightly reduced ranges for turbid and non-bloom waters. Similar indices derived from the use of remote sensing reflectance (Rrs), normalized water-leaving radiance (nLw) and combination of both are found rather inadequate to characterize the variability of the encountered bloom. In order to quantify the HABs in terms of chlorophyll (Chl), an empirical relationship is established between the RI and in-situ Chl in surface waters from about 0.4-71 mg m− 3, which yields a Red tide index Chlorophyll Algorithm (RCA) based on an exponential function with correlation coefficient R2 = 0.92. The established methods were extensively tested and compared with the performances of standard Ocean Chlorophyll 4 (OC4) algorithm and Local Chlorophyll Algorithm (LCA) using SeaWiFS images collected from typical red tide waters of Korean South Sea (KSS), East China Sea (ECS), Yellow Sea (YS) and Bohai Sea (BS) during 1999-2002. The standard spectral ratio algorithms, the OC4 and LCA, yielded large errors in Chl retrievals for coastal areas, besides providing false information about the encountered HABs in KSS, ECS, YS and BS waters. On the contrary, the RI coupled with the standard spectral ratios yielded comprehensive information about various ranges of algal blooms, while RCA Chl showing a good agreement with in-situ data led to enhanced understanding of the spatial and temporal variability of the recent HAB occurrences in high scattering and absorbing waters off the Korean and Chinese coasts.  相似文献   

13.
This work extends the previous study of Trishchenko et al. [Trishchenko, A. P., Cihlar, J., & Li, Z. (2002). Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors. Remote Sensing of Environment 81 (1), 1-18] that analyzed the spectral response function (SRF) effect for the Advanced Very High Resolution Radiometer (AVHRR) onboard the NOAA satellites NOAA-6 to NOAA-16 as well as the Moderate Resolution Imaging Spectroradiometer (MODIS), the VEGETATION sensor (VGT) and the Global Imager (GLI). The developed approach is now applied to cover three new AVHRR sensors launched in recent years on NOAA-17, 18, and METOP-A platforms. As in the previous study, the results are provided relative to the reference sensor AVHRR NOAA-9. The differences in reflectance among these three radiometers relative to the AVHRR NOAA-9 are similar to each other and range from − 0.015 to 0.015 (− 20% to + 2% relative) for visible (red) channel, and from − 0.03 to 0.02 (− 5% to 5%) for the near infrared (NIR) channel. The absolute change in the Normalized Difference Vegetation Index (NDVI) ranged from − 0.03 to + 0.06. Due to systematic biases of the visible channels toward smaller values and the NIR channels toward slightly larger values, the overall systematic biases for NDVI are positive. The polynomial approximations are provided for the bulk spectral correction with respect to the AVHRR NOAA-9 for consistency with previous study. Analysis was also conducted for the SRF effect only among the AVHRR-3 type of radiometer on NOAA-15, 16, 17, 18 and METOP-A using AVHRR NOAA-18 as a reference. The results show more consistency between sensors with typical correction being under 5% (or 0.01 in absolute values). The AVHRR METOP-A reveals the most different behavior among the AVHRR-3 group with generally positive bias for visible channel (up to + 5%, relative), slightly negative bias for the NIR channel (1%-2% relative), and negative NDVI bias (− 0.02 to + 0.005). Polynomial corrections are also suggested for normalization of AVHRR on NOAA-15, 16, 17 and METOP-A to AVHRR NOAA-18.  相似文献   

14.
Landsat imagery with a 30 m spatial resolution is well suited for characterizing landscape-level forest structure and dynamics. While Landsat images have advantageous spatial and spectral characteristics for describing vegetation properties, the Landsat sensor's revisit rate, or the temporal resolution of the data, is 16 days. When considering that cloud cover may impact any given acquisition, this lengthy revisit rate often results in a dearth of imagery for a desired time interval (e.g., month, growing season, or year) especially for areas at higher latitudes with shorter growing seasons. In contrast, MODIS (MODerate-resolution Imaging Spectroradiometer) has a high temporal resolution, covering the Earth up to multiple times per day, and depending on the spectral characteristics of interest, MODIS data have spatial resolutions of 250 m, 500 m, and 1000 m. By combining Landsat and MODIS data, we are able to capitalize on the spatial detail of Landsat and the temporal regularity of MODIS acquisitions. In this research, we apply and demonstrate a data fusion approach (Spatial and Temporal Adaptive Reflectance Fusion Model, STARFM) at a mainly coniferous study area in central British Columbia, Canada. Reflectance data for selected MODIS channels, all of which were resampled to 500 m, and Landsat (at 30 m) were combined to produce 18 synthetic Landsat images encompassing the 2001 growing season (May to October). We compared, on a channel-by-channel basis, the surface reflectance values (stratified by broad land cover types) of four real Landsat images with the corresponding closest date of synthetic Landsat imagery, and found no significant difference between real (observed) and synthetic (predicted) reflectance values (mean difference in reflectance: mixed forest x? = 0.086, σ = 0.088, broadleaf x? = 0.019, σ = 0.079, coniferous x? = 0.039, σ = 0.093). Similarly, a pixel based analysis shows that predicted and observed reflectance values for the four Landsat dates were closely related (mean r2 = 0.76 for the NIR band; r2 = 0.54 for the red band; p < 0.01). Investigating the trend in NDVI values in synthetic Landsat values over a growing season revealed that phenological patterns were well captured; however, when seasonal differences lead to a change in land cover (i.e., disturbance, snow cover), the algorithm used to generate the synthetic Landsat images was, as expected, less effective at predicting reflectance.  相似文献   

15.
This study intercompared the performance of eight band-ratio chlorophyll-a algorithms which together can be used to process measurements from the ocean colour satellite sensors CZCS, OCTS, SeaWiFS, MODIS, MERIS, and GLI. The study area included Subtropical, Subtropical Front and Subantarctic waters east of New Zealand, and Case 1 waters of the New Zealand northeast continental shelf. Over 170 co-incident measurements of spectral normalised water-leaving radiance and near-surface concentration of chlorophyll-a were made on nine research voyages between 1998 and 2000. The studentised bootstrap method was used to identify statistically significant bias in algorithm products relative to in situ measurements. The band-ratio algorithms used by CZCS, OCTS and SeaWiFS missions systematically underestimated chlorophyll-a concentration in the offshore regions by between 21% and 45%, but showed no systematic bias in the continental shelf waters. The band-ratio algorithms applicable to the MODIS and MERIS sensors had no clear bias with respect to in situ measurements in offshore waters, but had a positive bias of 20% over the continental shelf. The proposed GLI band-ratio algorithm led to estimates that were negatively biased with respect to in situ measurement offshore (− 30%), and positively biased over the continental shelf (20%). The results were consistent with unusually high values of absorption in the blue part of the spectrum (443-490 nm) compared to the green part (∼ 550 nm) by phytoplankton pigments in the offshore waters, and high chlorophyll-specific absorption over the continental shelf.  相似文献   

16.
The AERONET-based Surface Reflectance Validation Network (ASRVN) is an operational processing system developed for validation of satellite derived surface reflectance products at regional and global scales. The ASRVN receives 50 × 50 km2 subsets of MODIS data centered at AERONET sites along with AERONET aerosol and water vapor data, and performs an atmospheric correction. The ASRVN produces surface bidirectional reflectance factor (BRF), albedo, parameters of the Ross-Thick Li-Sparse (RTLS) BRF model, as well as Hemispherical-Directional Reflectance Factor (HDRF), which is required for comparison with the ground-based measurements. This paper presents a comparison of ASRVN HDRF with the ground-based HDRF measurements collected during 2001-2008 over a bright calibration Railroad Valley, Nevada site as part of the MODIS land validation program. The ground measurements were conducted by the Remote Sensing Group (RSG) at the University of Arizona using an ASD spectrometer. The study reveals a good agreement between ASRVN and RSG HDRF for both MODIS Terra and Aqua with rmse ~ 0.01-0.025 in the 500 m MODIS land bands B1-B7. Obtained rmse is below uncertainties due to the spatial and seasonal variability of the bright calibration 1 km2 area. While two MODIS instruments have a similar rmse in the visible bands, MODIS Aqua has a better agreement (lower rmse) with the ground data than MODIS Terra at wavelengths 0.87-2.1 μm. An independent overall good agreement of two MODIS instruments with the ground data indicates that the relative calibration of MODIS Terra and Aqua at medium-to-bright reflectance levels for the stated time period is significantly better than uncertainties of the ASRVN and ground data.  相似文献   

17.
A new algorithm, using the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite reflectance and aerosol single scattering properties simulated from a chemistry transport model (GEOS-Chem), is developed to retrieve aerosol optical thickness (AOT) over land in China during the spring dust season. The algorithm first uses a “dynamic lower envelope” approach to sample the MODIS dark-pixel reflectance data in low AOT conditions, to derive the local surface visible (0.65 μm)/near infrared (NIR, 2.1 μm) reflectance ratio. Joint retrievals of AOT at 0.65 μm and surface reflectance at 2.1 μm are then performed, based on the time, location, and spectral-dependent single scattering properties of the dusty atmosphere as simulated by the GEOS-Chem. A linearized vector radiative transfer model (VLIDORT) that simultaneously computes the top-of-atmosphere reflectance and its Jacobian with respect to AOT, is used in the forward component of the inversion of MODIS reflectance to AOT. Comparison of retrieved AOT results in April and May of 2008 with AERONET observations shows a strong correlation (R = 0.83), with small bias (0.01), and small RMSE (0.17); the figures are a substantial improvement over corresponding values obtained with the MODIS Collection 5 AOT algorithm for the same study region and time period. The small bias is partially due to the consideration of dust effect at 2.1 μm channel, without which the bias is − 0.05. The surface PM10 (particulate matter with diameter less than 10 μm) concentrations derived using this improved AOT retrieval show better agreement with ground observations than those derived from GEOS-Chem simulations alone, or those inferred from the MODIS Collection 5 AOT. This study underscores the value of using satellite reflectance to improve the air quality modeling and monitoring.  相似文献   

18.
Remote detection of the Trichodesmium spp. cyanobacteria blooms on the west Florida shelf (WFS) has been problematic due to optical complexity caused by sediment resuspension, coastal runoff, and bottom interference. By combining MODIS data measured by the ocean bands and land bands, an approach was developed to identify surface mats of Trichodesmium on the WFS. The approach first identifies possible bloom patches in MODIS FAI (floating algae index) 250 m resolution imagery derived from the Rayleigh-corrected reflectance at 667, 859, and 1240 nm. Then, spectral analysis examines the unique reflectance characteristics of Trichodesmium at 469, 488, 531, 551, and 555 nm due to specific optical properties (absorption, backscattering, and fluorescence) of the unusual pigments in Trichodesmium. These spectral characteristics (i.e., high-low-high-low-high reflectance at 469-488-531-551-555 nm, respectively) differentiate Trichodesmium mats unambiguously from other features observed in the FAI imagery, such as Sargassum spp. Tests in other coastal locations show that the approach is robust and applicable to other optically complex waters. Results shown here can help study Trichodesmium bloom dynamics (e.g., initiation and bloom formation) and may also help design future sensors to better detect and quantify Trichodesmium, an important N2 fixer in the global oceans.  相似文献   

19.
Considerable controversy is associated with dry season increases in the Enhanced Vegetation Index (EVI), observed using the Moderate Resolution Imaging Spectroradiometer (MODIS), compared with field-based estimates of decreasing plant productivity. Here, we investigate potential causes of intra-annual variability by comparing EVI from mature forest with field-measured Leaf Area Index (LAI) to validate space-based observations. EVI was calculated from 19 nadir and off-nadir Hyperion images in the 2005 dry season, and inspected for consistency with MODIS observations from 2004 to 2009. The objective was to evaluate the possible influence of the view-illumination geometry and of canopy foliage and leaf flush on the EVI. Spectral mixture models were used to evaluate the relationship between EVI and the shade fraction, a measure that varies with pixel brightness. MODIS LAI values were compared with LAI estimated using hemispherical photographs taken in two field campaigns in the dry season. To keep LAI and leaf flush conditions as constant variables and vary solar illumination, we used airborne Hyperspectral Mapper (Hymap) data acquired over mature forest from another region on the same day but with two distinct solar zenith angles (SZA) (29° and 53°). Results showed that intra-annual variability in MODIS and nadir Hyperion EVI in the dry season of tropical forest were driven by solar illumination effects rather than changes in LAI. The reflectance of the MODIS and Hyperion blue, red and near infrared (NIR) bands was higher at the end of the dry season because of the predominance of sunlit canopy components for the sensors due to decreasing SZA from June (44°) to September (26°). Because EVI was highly correlated with the reflectance of the NIR band used to generate it (r of + 0.98 for MODIS and + 0.88 for Hyperion), this vegetation index followed the general NIR pattern, increasing with smaller SZA towards the end of the dry season. Hyperion EVI was inversely correlated with the shade fraction (r = − 0.93). Changes in canopy foliage detected from MODIS LAI data were not consistent with LAI estimates from hemispherical photographs. Although further research is necessary to measure the impact of leaf flush on intra-annual EVI variability in the Querência region, analysis of Hymap data with fixed LAI and leaf flush conditions confirmed the influence of the illumination effects on the EVI.  相似文献   

20.
The position of the inflexion point in the red edge region (680 to 780 nm) of the spectral reflectance signature, termed the red edge position (REP), is affected by biochemical and biophysical parameters and has been used as a means to estimate foliar chlorophyll or nitrogen content. In this paper, we report on a new technique for extracting the REP from hyperspectral data that aims to mitigate the discontinuity in the relationship between the REP and the nitrogen content caused by the existence of a double-peak feature on the derivative spectrum. It is based on a linear extrapolation of straight lines on the far-red (680 to 700 nm) and NIR (725 to 760 nm) flanks of the first derivative reflectance spectrum. The REP is then defined by the wavelength value at the intersection of the two lines. The output is a REP equation, REP = − (c1 − c2) / (m1 − m2), where c1 and c2, and m1 and m2 represent the intercepts and slopes of the far-red and NIR lines, respectively. Far-red wavebands at 679.65 and 694.30 nm in combination with NIR wavebands at 732.46 and 760.41 nm or at 723.64 and 760.41 nm were identified as the optimal combinations for calculating nitrogen-sensitive REPs for three spectral data sets (rye canopy, and maize leaf and mixed grass/herb leaf stack spectra). REPs extracted using this new technique (linear extrapolation method) showed high correlations with a wide range of foliar nitrogen concentrations for both narrow and wider bandwidth spectra, being comparable with results obtained using the traditional linear interpolation, polynomial and inverted Gaussian fitting techniques. In addition, the new technique is simple as is the case with the linear interpolation method, but performed better than the latter method in the case of maize leaves at different developmental stages and mixed grass/herb leaves with a low nitrogen concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号