首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the last decade, the number of distributed application domains with temporal requirements has significantly augmented, arising the necessity of exploring new concepts and paradigms that allow, on the one hand, the development of dynamic and flexible distributed applications and, on the other hand, the reusability of code. Service‐oriented paradigms have been successfully applied to distributed environments, increasing their flexibility and allowing the reusability of their components. Besides, distributed real‐time Java technologies have shown to be a good candidate to deploy real‐time distributed applications. This paper presents a model for service‐oriented applications on a time‐triggered distributed real‐time Java environment, focusing on the definition of the temporal model of an application and its schedulability, applying and evaluating this model in real‐time service‐oriented composition algorithms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, the convergence speed of consensus for a second‐order integrator with the fixed undirected graph is investigated. Additionally, the quantized information and bounded control input are applied to the system. To accelerate the convergence speed, a distributed variable adjacency matrix is proposed where the links' weight are functions defined based on the distance to the neighbors. The stability of the whole system for both of the quantized and non‐quantized consensus protocol considering a general weight function is shown using Lyapunov's direct approach. Furthermore, it is mentioned that the consensus value of the position depends on the structure of the quantizer.  相似文献   

3.
In this paper, the consensus problem is investigated via bounded controls for the multi‐agent systems with or without communication. Based on the nested saturation method, the saturated control laws are designed to solve the consensus problem. Under the designed saturated control laws, the transient performance of the closed‐loop system can be improved by tuning the saturation level. First of all, asymptotical consensus algorithms with bounded control inputs are proposed for the multi‐agent systems with or without communication delays. Under these consensus algorithms, the states’ consensus can be achieved asymptotically. Then, based on a kind of novel nonlinear saturation functions, bounded finite‐time consensus algorithms are further developed. It is shown that the states’ consensus can be achieved in finite time. Finally, two examples are given to verify the efficiency of the proposed methods.  相似文献   

4.
In this paper, the problem of iterative learning control for a class of nonlinear systems is studied. Here, the nonlinear functions satisfy the one‐sided Lipschitz and quadratically inner‐bounded conditions. For such nonlinear systems, open‐loop and closed‐loop D‐type learning algorithms are adopted, respectively, and furthermore, the convergence conditions of the D‐type learning algorithms are established. It is shown that both algorithms can ensure that the system output converges to the desired trajectory on the whole time interval. Finally, the validity of the presented D‐type learning algorithms is verified by a numerical example.  相似文献   

5.
A distributed system consists of a collection of autonomous heterogeneous resources that provide resource sharing and a common platform for running parallel compute‐intensive applications. The different application characteristics combined with the heterogeneity and performance variations of the distributed system make it difficult to find the optimal set of needed resources. When deployed, user applications are usually handled by application domain experts or system administrators who depending on the infrastructure provide a scheduling strategy for selecting the best candidate resource over a set of available resources. However, the provided strategy is usually generic, aimed at handling a wide array of applications and does not take into consideration specific application resource requirements. As such, an intelligent method for selecting the best resources based on expert knowledge is needed. In this paper, we propose a neural network‐based multi‐agent resource selection technique capable of mimicking the services of an expert user. In addition, to cope with the geographical distribution of the underlying system, we employ a multi‐agent coordination mechanism. The proposed neural network‐based scheduling framework combined with the multi‐agent intelligence is a unique approach to efficiently deal with the resource selection problem. Results run on a simulated environment show the efficiency of our proposed method. Several scheduling simulations were conducted to compare the performance of some conventional resource selection methods against the proposed agent‐based neural network technique. The results obtained indicate that the agent‐based approach outperformed the classical algorithms by reducing the amount of time required to search for suitable resources irrespective of the resource size. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The fixed‐time synchronization problem for a class of second‐order nonlinear multi‐agent systems with a leader‐follower architecture is investigated in this paper. To achieve the fixed‐time tracking task, the design procedure is divided into two steps. At the first step, a distributed fixed‐time observer is designed for each agent to estimate the leader's state in a fixed time. Then, at the second step, based on the technique of adding a power integrator, a fixed‐time tracking controller for each agent is proposed such that the estimate leader's state can be tracked in a fixed time. Finally, an observer‐based fixed‐time controller is developed such that the leader can be tracked by all the followers in a fixed time, which can be predetermined. Simulations are presented to verify the effectiveness of the proposed approach.  相似文献   

7.
This paper discusses the observer‐based finite‐time stabilization for discrete‐time switched singular systems with quadratically inner‐bounded nonlinear terms. Firstly, based on the Luenberger‐like observer, by using the average dwell time approach, sufficient conditions are proposed to make closed‐loop systems be regular, be causal, as having a unique solution, and be uniformly finite‐time bounded. Then, a new linear matrix inequality sufficient condition for the existence of an observer‐based controller is obtained by using certain matrix decoupling techniques, and the controller is designed. In this paper, the conditions proposed not only give the observer‐based controller design methods but also guarantee the existence and uniqueness of solution for the systems. Since the quadratically inner‐bounded nonlinearities are more general than Lipschitz nonlinearities and one‐sided Lipschitz nonlinearities, compared with previous works, the proposed controller design methods in this paper are also more general than the existing ones. Finally, numerical examples are provided to illustrate the effectiveness of the methods proposed in this paper.  相似文献   

8.
Based on the model‐free adaptive control, the distributed formation control problem is investigated for a class of unknown heterogeneous nonlinear discrete‐time multiagent systems with bounded disturbance. Two equivalent data models to the unknown multiagent systems are established through the dynamic linearization technique considering the circumstances with measurable and unmeasurable disturbances. Based on the obtained data models, two distributed controllers are designed with only using the input/output and disturbance data of the neighbor agents system. The tracking error of the closed‐loop system driven by the proposed controllers is shown to be bounded by the contraction mapping principle and inductive methods. An example illustrates the effectiveness of the proposed two distributed controllers.  相似文献   

9.
In this article, we propose distributed control algorithms for first‐ and second‐order multiagent systems for addressing finite‐time control problem with a priori given, user‐defined finite‐time convergence guarantees. The proposed control frameworks are predicated on a recently developed time transformation approach. Specifically, our contribution is twofold: First, a generalized time transformation function is proposed that converts the user‐defined finite‐time interval to a stretched infinite‐time interval, where one can design a distributed control algorithm on this stretched interval and then transform it back to the original finite‐time interval for achieving a given multiagent system objective. Second, for a specific time transformation function, we analytically establish the robustness properties of the resulting finite‐time distributed control algorithms against vanishing and nonvanishing system uncertainties. By contrast to existing finite‐time approaches, it is shown that the proposed algorithms can preserve a priori given, user‐defined finite‐time convergence regardless of the initial conditions of the multiagent system, the graph topology, and without requiring a knowledge of the upper bounds of the considered class of system uncertainties. Illustrative numerical examples are included to further demonstrate the efficacy of the presented results.  相似文献   

10.
This paper develops two distributed finite‐time fault‐tolerant control algorithms for attitude synchronization of multiple spacecraft with a dynamic virtual leader in the presence of modeling uncertainties, external disturbances, and actuator faults. The leader gives commands only to a subset of the followers, and the communication flow between followers is directed. By employing a novel distributed nonsingular fast terminal sliding mode and adaptive mechanism, a distributed finite‐time fault‐tolerant control law is proposed to guarantee all the follower spacecraft that finite‐time track a dynamic virtual leader. Then utilizing three distributed finite‐time sliding mode estimators, an estimator‐based distributed finite‐time fault‐tolerant control law is proposed using only the followers' estimates of the virtual leader. Both of them do not require online identification of the actuator faults and provide robustness, finite‐time convergence, fault‐tolerant, disturbance rejection, and high control precision. Finally, numerical simulations are presented to evaluate the theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, a novel consensus protocol for second‐order multi‐agent systems is elegantly designed, and it relaxes the common requirement of the velocity information of the agents. An interesting consensus criterion is explicitly derived in terms of the proposed cooperation law provided that the dynamical equation for each agent is linear. As an extension, the proposed cooperation rule is further extended to a general scenario, where the coupling weights characterizing the relationships among the neighboring agents are time‐varying. Accordingly, two distributed cooperative algorithms (node/edge‐based scheme) are explicitly designed. Moreover, we study the case of network with switching communication setting. It shows that edge‐based law is capable with the time‐varying topology, while the node‐based scheme is not. In addition, the proposed coordination strategies are applied to the tracking problem as well. Finally, these obtained consensus results are well supported in the light of the pendulum models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
This paper is concerned with the problem of formation‐containment on networked systems, with interconnected systems modeled by the Euler‐Lagrange equation with bounded inputs and time‐varying delays on the communication channels. The main results are the design of control algorithms and sufficient conditions to ensure the convergence of the network. The control algorithms are designed as distributed dynamic controllers, in such a way that the number of neighbors of each agent is decoupled from the bound of the control inputs. That is, in the proposed approach the amplitude of the input signal does not directly increase with the number of neighbors of each agent. The proposed sufficient conditions for the asymptotic convergence follow from the Lyapunov‐Krasovskii theory and are formulated in the linear matrix inequalities framework. The conditions rely only on the upper bound of delays and on a subset of the controller parameters, but they do not depend on the model of each agent, which makes it suitable for networks with agents governed by distinct dynamics. In order to illustrate the effectiveness of the proposed method we present numerical examples and compare with similar approaches existing in the literature.  相似文献   

13.
Asymptotic output‐feedback tracking in a class of causal nonminimum phase uncertain nonlinear systems is addressed via sliding mode techniques. Sliding mode control is proposed for robust stabilization of the output tracking error in the presence of a bounded disturbance. The output reference profile and the unknown input/disturbance are supposed to be described by unknown linear exogenous systems of a given order. Local asymptotic stability of the output tracking error dynamics along with the boundedness of the internal states are proven. The unstable internal states are estimated asymptotically via the proposed multistage observer that is based on the method of extended system center. A higher‐order sliding mode observer/differentiator is used for the exact estimation of the input–output states in a finite time. The bounded disturbance is reconstructed asymptotically. A numerical example illustrates the efficiency of the proposed output‐feedback tracking approach developed for causal nonminimum phase nonlinear systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
This paper addresses the Mittag‐Leffler stabilization for an unstable time‐fractional anomalous diffusion equation with boundary control subject to the control matched disturbance. The active disturbance rejection control (ADRC) approach is adopted for developing the control law. A state‐feedback scheme is designed to estimate the disturbance by constructing two auxiliary systems: One is to separate the disturbance from the original system to a Mittag‐Leffler stable system and the other is to estimate the disturbance finally. The proposed control law compensates the disturbance using its estimation and stabilizes system asymptotically. The closed‐loop system is shown to be Mittag‐Leffler stable and the constructed auxiliary systems in the closed loop are proved to be bounded. This is the first time for ADRC to be applied to a system described by the fractional partial differential system without using the high gain.  相似文献   

15.
This paper investigates the finite‐time consensus problem for multi‐agent systems with second‐order individual dynamics under switching topologies. A distributed continuous‐time protocol is designed to guarantee finite‐time consensus for homogeneous agents without predetermined leaders, i.e., it ensures agents asymptotically converge to an average consensus within finite time, even if the interaction topology among them is time‐varying but stepwise jointly‐connected. In particular, it introduces a distributed continuous‐time protocol to reach consensus in finite time and reduce the chattering together. Finally, the simulation results are also given to validate the proposed approach.  相似文献   

16.
Scenario‐based specifications (SBSs), such as UML interaction models, offer an intuitive and visual way of describing design requirements, and are playing an increasingly important role in the design of software systems. This paper presents an approach to timing analysis of SBSs expressed by UML interaction models. The approach considers more general and expressive timing constraints in UML sequence diagrams (SDs), and gives a solution to the reachability analysis, constraint conformance analysis and bounded delay analysis problems, which reduces these problems into linear programs. With the synchronous interpretation of the SD compositions, the timing analysis algorithms in the approach form a decision procedure for a class of SBSs where any loop in any path is time‐independent of the other parts in the path. These algorithms are also a semi‐decision procedure for general SBSs with both the synchronous and asynchronous composition semantics. The approach also supports bounded timing analysis of SBSs, which investigates all the paths in the bound limit one by one, and performs the timing analysis for each finite path by linear programming. A tool prototype has been developed to support this approach. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Self‐adaptive software is a closed‐loop system, since it continuously monitors its context (i.e. environment) and/or self (i.e. software entities) in order to adapt itself properly to changes. We believe that representing adaptation goals explicitly and tracing them at run‐time are helpful in decision making for adaptation. While goal‐driven models are used in requirements engineering, they have not been utilized systematically yet for run‐time adaptation. To address this research gap, this article focuses on the deciding process in self‐adaptive software, and proposes the Goal‐Action‐Attribute Model (GAAM). An action selection mechanism, based on cooperative decision making, is also proposed that uses GAAM to select the appropriate adaptation action(s). The emphasis is on building a light‐weight and scalable run‐time model which needs less design and tuning effort comparing with a typical rule‐based approach. The GAAM and action selection mechanism are evaluated using a set of experiments on a simulated multi‐tier enterprise application, and two sample ordinal and cardinal action preference lists. The evaluation is accomplished based on a systematic design of experiment and a detailed statistical analysis in order to investigate several research questions. The findings are promising, considering the obtained results, and other impacts of the approach on engineering self‐adaptive software. Although, one case study is not enough to generalize the findings, and the proposed mechanism does not always outperform a typical rule‐based approach, less effort, scalability, and flexibility of GAAM are remarkable. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
19.
An integrated approach that consists of sensor‐based filtering algorithms, local processors, and a global processor is employed to describe the distributed fusion problem when several sensors execute surveillance over a certain area. For the sensor tracking systems, each filtering algorithm utilized in the reference Cartesian coordinate system is presented for target tracking, with the radar measuring range, bearing, and elevation angle in the spherical coordinate system (SCS). For the local processors, each track‐to‐track fusion algorithm is used to merge two tracks representing the same target. The number of 2‐combinations of a set with N distinct sensors is considered for central track fusion. For the global processor, the data fusion algorithms, simplified maximum likelihood (SML) estimator and covariance matching method (CMM), based on linear minimum variance (LMV) estimation fusion theory, are developed for use in a centralized track‐to‐track fusion situation. The resulting global fusers can be implemented in a parallel structure to facilitate estimation fusion calculation. Simulation results show that the proposed SML estimator has a more robust capability of improving tracking accuracy than the CMM and the LMV estimators. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

20.
High‐order sliding mode control techniques are proposed for uncertain nonlinear SISO systems with bounded uncertainties based on two different terminal sliding mode approaches. The tracking error of the output converges to zero in finite time by designing a terminal sliding mode controller. In addition, the adaptive control method is employed to identify bounded uncertainties for eliminating the requirement of boundaries needed in the conventional design. The controllers are derived using Lyapunov theory, so the stability of the closed‐loop system is guaranteed. In the first technique, the developed procedure removes the reaching phase of sliding mode and realizes global robustness. The proposed algorithms ensure establishment of high‐order sliding mode. An illustrative example of a car control demonstrates effectiveness of the presented designs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号