首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 484 毫秒

1.  一种具有最优收敛速度的正则化境面下降算法  
   王惊晓  高乾坤  汪群山《计算机工程》,2014年第6期
   Pegasos算法是求解大规模支持向量机问题的有效方法,在随机梯度下降过程中植入多阶段循环步骤,能使该算法得到最优的收敛速度O(1/T)。COMID算法是由镜面下降算法推广得到的正则化随机形式,可保证正则化项的结构,但对于强凸的优化问题,该算法的收敛速度仅为O(logT/T)。为此,在COMID算法中引入多阶段循环步骤,提出一种求解L1+L2混合正则化项问题的最优正则化镜面下降算法,证明其具有最优的收敛速度O(1/T),以及与COMID算法相同的稀疏性。在大规模数据库上的实验结果验证了理论分析的正确性和所提算法的有效性。    

2.  L1范数正则化SVM聚类算法  
   刘建伟  李双成  付捷  罗雄麟《计算机工程》,2012年第38卷第12期
   提出L1范数正则化支持向量机(SVM)聚类算法。该算法能够同时实现聚类和特征选择功能。给出L1范数正则化SVM聚类原问题和对偶问题形式,采用类似迭代坐标下降的方法求解困难的混合整数规划问题。在多组数据集上的实验结果表明,L1范数正则化SVM聚类算法聚类准确率与L2范数正则化SVM聚类算法相近,而且能够实现特征选择。    

3.  Ll-norm Regularized SVM Clustering Algorithm  
   LIU Jian-wei    LI Shuang-cheng    FU Jie    LUO Xiong-lin《计算机工程》,2012年第38卷第12期
   提出L1范数正则化支持向量机(SVM)聚类算法.该算法能够同时实现聚类和特征选择功能.给出LI范数正则化SVM聚类原问题和对偶问题形式,采用类似迭代坐标下降的方法求解困难的混合整数规划问题.在多组数据集上的实验结果表明,L1范数正则化SVM聚类算法聚类准确率与L2范数正则化SVM聚类算法相近,而且能够实现特征选择.    

4.  L1正则化机器学习问题求解分析  被引次数:1
   孔康  汪群山  梁万路《计算机工程》,2011年第37卷第17期
   以稀疏学习为主线,从多阶段、多步骤优化思想的角度出发,对当前流行的L1正则化求解算法进行分类,比较基于次梯度的多步骤方法、基于坐标优化的多阶段方法,以及软L1正则化方法的收敛性能、时空复杂度和解的稀疏程度。分析表明,基于机器学习问题特殊结构的学习算法可以获得较好的稀疏性和较快的收敛速度。    

5.  基于变分的图像恢复算法及收敛性  被引次数:2
   张永平  郑南宁  赵荣椿《自动化学报》,2002年第28卷第5期
   提出了一种保持边缘的正则化图像恢复算法,该方法可有效地用于求解线性逆问题的非凸优化过程.通过对正则化函数及相应泛函性质的理论分析,得出了使泛函达到最小的正则化函数表达式;引入一个与原非凸泛函相应的二元泛函,将非凸优化问题转化为本质上的凸优化问题,采用松弛迭代算法获得非凸优化问题的局部极小解;证明了所提出的算法是全局收敛的.通过实验验证了算法的有效性.    

6.  基于非凸L_(1-2)正则化的生物发光断层成像仿真研究  
   余景景  刘佳乐《中国激光》,2018年第4期
   生物发光断层成像(BLT)是一种低成本、高灵敏、具有巨大潜力的光学分子成像模态,高效稳定的重建算法是将其推向实用的关键。为克服BLT重建的高不适定性,提出了基于非凸L_(1-2)正则化的重建方法,采用凸差分算法来解决非凸泛函最小化问题,在每一步迭代中采用带自适应惩罚项的交替方向乘子法高效求解。为评估该方法的有效性和稳健性,设计了单光源和双光源数字鼠仿体实验,并与3个典型的重建算法进行对比,仿真实验结果表明,所提L_(1-2)正则化方法在不同光源设置下都得到了最准确的光源定位。    

7.  一种基于Comid的非光滑损失随机坐标下降方法  被引次数:1
   陶卿  朱烨雷  罗强  孔康《电子学报》,2013年第41卷第4期
    坐标下降方法以简洁的操作流程、低廉的计算代价和快速的实际收敛效果,成为处理大规模优化最有效的方法之一.但目前几乎所有的坐标下降方法都由于子问题解析求解的需要而假设损失函数的光滑性.本文在结构学习的框架下,在采用Comid方法求解随机挑选单变量子问题的基础上,提出了一种新的关于非光滑损失的随机坐标下降方法.理论分析表明本文所提出的算法在一般凸条件下可以得到Ο(√t/t)的收敛速度,在强凸条件下可以得到Ο(lnt/t)的收敛速度.实验结果表明本文所提出的算法对正则化Hinge损失问题实现了坐标优化预期的效果.    

8.  稀疏性正则化的图像Laplace去噪及PR算子分裂算法*  
   吕占强  孙玉宝《计算机应用研究》,2011年第28卷第9期
   在Bayesian-MAP框架下,建立了针对Laplace噪声的稀疏性正则化图像去噪凸变分模型,模型采用L1范数作为数据保真项,非光滑的正则项约束图像在过完备字典下表示系数的稀疏性。进一步基于Peaceman-Rachford算子分裂算法,提出了数值求解该非光滑模型的多步迭代快速算法,通过引入保真项与稀疏性正则项的邻近算子,可将原问题转换为两个简单子问题的迭代求解,降低了计算复杂性。实验结果验证了模型与数值算法的有效性,本算法在摄像自动报靶系统中得到了应用。    

9.  L1/2正则化Logistic回归  
   赵谦  孟德宇  徐宗本《模式识别与人工智能》,2012年第25卷第5期
   提出一种L1/2正则化Logistic回归模型,并针对此模型构造有效的求解算法.文中模型基于L1/2正则化理论建立,有效改善传统模型存在的变量选择与计算过拟合问题.文中算法基于"坐标下降"思想构造,快速有效.在一系列人工和实际数据集上的实验表明,文中算法在分类问题中具有良好的变量选择能力和预测能力,优于传统Logistic回归和L1正则化Logistic回归.    

10.  一种具有O(1/T)收敛速率的稀疏随机算法  
   姜纪远  夏良  章显  陶卿《计算机研究与发展》,2014年第51卷第9期
   随机梯度下降(stochastic gradient descent,SGD)是一种求解大规模优化问题的简单高效方法,近期的研究表明,在求解强凸优化问题时其收敛速率可通过α-suffix平均技巧得到有效的提升.但SGD属于黑箱方法,难以得到正则化优化问题所期望的实际结构效果.另一方面,COMID(composite objective mirror descent)是一种能保证L1正则化结构的稀疏随机算法,但对于强凸优化问题其收敛速率仅为O(logT?T).主要考虑"L1+Hinge"优化问题,首先引入L2强凸项将其转化为强凸优化问题,进而将COMID算法和α-suffix平均技巧结合得到L1MD-α算法.证明了L1MD-α具有O(1?T)的收敛速率,并且获得了比COMID更好的稀疏性.大规模数据库上的实验验证了理论分析的正确性和所提算法的有效性.    

11.  复合正则化联合稀疏贝叶斯学习的高光谱稀疏解混算法  
   孔繁锵  郭文骏  沈 秋  王丹丹《红外与毫米波学报》,2016年第35卷第2期
   将稀疏贝叶斯学习引入线性混合像元分解中,提出一种基于复合正则化联合稀疏贝叶斯学习的高光谱稀疏解混算法.在多观测向量的稀疏贝叶斯框架下,对各参数建立概率模型,经贝叶斯推断得到基于L2,1正则化的联合稀疏贝叶斯解混模型,并将丰度向量的非负与和为一约束加入到凸优化的目标函数中,通过变量分离法将复合正则化问题分解成多个单一正则化问题交替迭代求解,并利用参数自适应算法对正则化参数进行更新.模拟数据和真实数据的实验结果表明,该算法比贪婪算法和凸优化算法能获得更高的解混精度,并且适用于端元个数较多和信噪比较低的高光谱数据.    

12.  一种非光滑损失坐标下降算法  
   吴卫邦  朱烨雷    《计算机应用研究》,2012年第29卷第10期
   针对非光滑损失问题提出一种新的坐标下降算法,采用排序搜索的方式求解子问题解析解。分析了算法的时间复杂度,并给出了三种提高收敛速度的实用技巧。实验表明算法对正则化Hinge损失问题具有良好的性能,达到了预期的效果。    

13.  稀疏重构算法  
   王汗三  陈杰《电子科技》,2013年第26卷第5期
   在图像处理和统计中,对于一个大的欠定线性方程,找到一个稀疏的近似解,是一种常见问题。标准方法是对一个目标函数求极小值,其中目标函数由一个二次的误差项l2加一个正则项l1组成。针对一般性问题,目标函数有一个光滑的凸函数加上一个非光滑的正则项,提出了一种算法结构。该算法通过求解最优子问题,从而求出稀疏的近似解。仿真结果表明,该算法能够更快的求出近似解,在正则项是凸的情况下,可以证明目标函数的极小解是收敛的。    

14.  对偶算法在紧框架域TV-L1去模糊模型中的应用  
   李旭超  马松岩  边素轩《中国图象图形学报》,2015年第20卷第11期
   目的 建立准确的数学模型并获得有效的求解算法是图像恢复面临的“两难”问题,非光滑型能量泛函有利于准确描述图像的特征,但很难获得有效的求解算法。提出一种拟合项和正则项都是非光滑型能量泛函正则化模型,并推导出有效的交替迭代算法。方法 首先,对系统和椒盐噪声模糊的图像,在紧框架域,用L1范数描述拟合项,用加权有界变差函数半范数描述正则项。其次,通过引入辅助变量,将图像恢复正则化模型转化为增广拉格朗日模型。再次,利用变量分裂技术,将转化模型分解为两个子问题。最后,利用Fenchel变换和不动点迭代原理,将子问题分别转化为对偶迭代子问题和松弛迭代子问题,并证明迭代子问题的收敛性。结果 针对图像恢复模型的非光滑性,提出一种交替迭代算法。仿真实验表明,相对传统算法,本文算法能有效地恢复系统和椒盐噪声模糊的图像,提高峰值信噪比大约0.51分贝。结论 该正则化模型能有效地恢复图像的边缘,取得较高的峰值信噪比和结构相似测度,具有较快的收敛速度,适用于恢复椒盐噪声模糊的图像。    

15.  一种改进的极端学习机算法  
   刘作志  刘欢《纺织高校基础科学学报》,2014年第4期
   为了提高极端学习机算法的稳定性和学习速度,结合L1/2正则化理论提出一种改进的极端学习机算法——基于L1/2正则化的快速学习算法(L1/2-RELM).该算法首先采用L1/2正则项对极端学习机算法进行约束,其次运用half算法确定网络输出权重,提高了算法的稳定性和学习速度.数值实验表明,所提算法的学习速度比极端学习机算法的学习速度更快,且性能更加稳定.    

16.  组合范数正则化稀疏编码和自适应加权残差的鲁棒跟踪  
   孔军  成静  蒋敏  柳晨华  顾晓峰《计算机辅助设计与图形学学报》,2018年第4期
   针对基于稀疏表示的目标跟踪中编码系数采用L_0或L_1范数正则,易造成NP难优化或预估偏差增大等问题,提出一种基于贝叶斯框架下的组合范数正则化稀疏编码和自适应加权残差的鲁棒跟踪算法.首先提出组合范数正则化稀疏编码,对目标函数编码系数同时进行L_0和L_1正则,根据其贡献程度赋予不同的权值,以增强目标外观模型的鲁棒性;其次在目标函数中引入残差项,赋予其自适应权重来缓解噪声、腐蚀和光照等离群子干扰;最后求解目标函数最小化所涉及的非凸病态问题,在加速近邻梯度算法框架下提出一种广义阈值法来迭代求解最优值.采用大量具有挑战性的序列进行实验的结果表明,与现阶段其他主流算法相比,该算法具有更好的鲁棒性.    

17.  基于L1正则化的贝叶斯网络分类器  
   王影  王浩  俞奎  姚宏亮《计算机科学》,2012年第39卷第1期
   目前基于节点排序的贝叶斯网络分类器忽略了节点序列中已选变量和类标签之间的信息,导致分类器的准确率很难进一步提高。针对这个问题,提出了一种简单高效的贝叶斯网络分类器的学习算法:L1正则化的贝叶斯网络分类器(L1-BNC)。通过调整Lasso方法中的约束值,充分利用回归残差的信息,结合点序列中已选变量和类标签的信息,形成一条优秀的有序变量拓扑序列(L1正则化路径);基于该序列,利用K2算法生成优良的贝叶斯网络分类器。实验表明,L1-BNC在分类精度上优于已有的贝叶斯网络分类器。L1-BNC也与SVM,KNN和J48分类算法进行了比较,在大部分数据集上,L1-BNC优于这些算法。    

18.  基于l0正则化的增量低秩特征学习目标跟踪  
   邱立达  傅平  王建兴《光电子.激光》,2017年第3期
   为了提高生成型目标跟踪算法在遮挡、背景干扰 等复杂条件下的性能,在稀疏编码模型中引入l0范数正 则化约束,以减少冗余编码信息并改善目标表观重构效果。同时提出一种新的基于非凸近端 加速梯度的快速迭代算法, 解决由此产生的非凸非光滑优化问题。设计了一种增量低秩学习策略,和传统方法需 要将目标观测数据作为 一个整体进行低秩学习不同,本文方法通过l0正则化稀疏编码能够有效地对目标低秩特 征子空间进行在线学习和更 新。在多个视频序列上的实验表明:基于l0正则化的增量低秩学习方法能有效提高目标 跟踪算法的准确率和鲁棒性; 和8种优秀的跟踪算法相比,本文算法在中心误差稳健性和重叠率稳健性两个指标上都取得 了最好结果。    

19.  一种求解强凸优化问题的最优随机算法  
   邵言剑  陶卿  姜纪远  周柏《软件学报》,2014年第25卷第9期
   随机梯度下降(SGD)算法是处理大规模数据的有效方法之一.黑箱方法SGD在强凸条件下能达到最优的O(1/T)收敛速率,但对于求解L1+L2正则化学习问题的结构优化算法,如COMID(composite objective mirror descent)仅具有O(lnT/T)的收敛速率.提出一种能够保证稀疏性基于COMID的加权算法,证明了其不仅具有O(1/T)的收敛速率,还具有on-the-fly计算的优点,从而减少了计算代价.实验结果表明了理论分析的正确性和所提算法的有效性.    

20.  L1+L2正则化逻辑斯蒂模型分类算法  
   刘建伟  付捷  罗雄麟《计算机工程》,2012年第38卷第13期
   提出一种L1+L2范数正则化逻辑斯蒂模型分类算法。该算法引入L2范数正则化,解决L1正则化逻辑斯蒂算法迭代过程奇异问题,通过引入样本向量的扩展和新的权值向量完成L1范数非平滑问题,最终使用共轭梯度方法求解经过转化的最优化问题。在各种实际数据集上的实验结果表明,该算法优于L2范数、L1范数和Lp范数正则化逻辑斯蒂模型,具有较好的特征选择和分类性能。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号