首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ergonomics》2012,55(9):1228-1239
Abstract

Submaximal isometric muscle contractions have been reported to increase variability of muscle activation during computer work; however, other types of active contractions may be more beneficial. Our objective was to determine which type of active pause vs. rest is more efficient in changing muscle activity pattern during a computer task. Asymptomatic regular computer users performed a standardised 20-min computer task four times, integrating a different type of pause: sub-maximal isometric contraction, dynamic contraction, postural exercise and rest. Surface electromyographic (SEMG) activity was recorded bilaterally from five neck/shoulder muscles. Root-mean-square decreased with isometric pauses in the cervical paraspinals, upper trapezius and middle trapezius, whereas it increased with rest. Variability in the pattern of muscular activity was not affected by any type of pause. Overall, no detrimental effects on the level of SEMG during active pauses were found suggesting that they could be implemented without a cost on activation level or variability.

Practitioner Summary: We aimed to determine which type of active pause vs. rest is best in changing muscle activity pattern during a computer task. Asymptomatic computer users performed a standardised computer task integrating different types of pauses. Muscle activation decreased with isometric pauses in neck/shoulder muscles, suggesting their implementation during computer work.  相似文献   

2.
《Ergonomics》2012,55(6):980-989
Assessment of control of posture using a task battery that represents work-related postural conditions is highly recommended for providing a comprehensive understanding of collective postural demands. However, dearth of evidence exists on the reliability of a task battery, thus precluding its use as an outcome measure in field research. This study investigated the intrasession reliability and systematic variation of force plate derived centre of pressure (COP) measures obtained during repeated performance of a task battery (lifting task, limits of stability and bipedal and unipedal stance). COP signals obtained during each task performance were processed to derive various time-domain COP measures. Statistical analyses revealed that 13 of the 19 COP measures displayed excellent relative (ICC(2,3) ≥ 0.75) and acceptable absolute reliability (SEM%: ≤ 10). Although COP measures displayed systematic variation, the differences were less or equal to the measurement error, except COP measures of unipedal stance and limits of stability. The chosen task battery is reliable and can be used for comprehensive evaluation of control of posture, in both field and laboratory research.

Practitioner Summary: Repeated evaluation of multiple tasks together sequentially could introduce measurement variability. This study investigated intrasession reliability of a task battery representing common work-related postures. The chosen task battery was found to be reliable with acceptable measurement error and can be used in field research settings for evaluation of control of posture.  相似文献   

3.
《Ergonomics》2012,55(2):180-201
The aim of this study was to investigate the maximum acceptable contraction frequencies (i.e. work–rest cycles) for an isometric-intermittent handgrip task as a function of grip span, applied force and shoulder posture using psychophysical and physiological approaches. Twelve healthy males served as subjects. The three grip spans investigated were the optimal, 2 cm narrower than the optimal, and 2 cm wider than the optimal. The grip force levels studied were 15% and 30% of maximum voluntary grip force and the two shoulder postures were 25° flexion and 30° abduction. The psychophysical results indicate that subjects work faster with the narrower grip span at 15% of maximum voluntary grip force level in comparison to working with the optimal and the wider spans. However, when the task required 30% of maximum grip force level, the subjects worked faster with the optimal grip span. These findings were supported by the results of electromyography, heart rate, blood pressure and perceived discomfort. The study suggests that grip span of a tool is an important factor to be considered in predicting optimal work–rest cycles for hand grip tasks, and the optimum setting of grip span of the hand-tool depends on the required task force level. That is, the optimality is relative rather than absolute. In addition, it appears that weaker subjects can work at a higher rate than stronger ones at the same relative force level.  相似文献   

4.
《Ergonomics》2012,55(1):83-91
Overhead work has established links to upper extremity discomfort and disorders. As many jobs incorporate working overhead, this study aimed to identify working conditions requiring relatively lower muscular shoulder load. Eleven upper extremity muscles were monitored with electromyography during laboratory simulations of overhead work tasks. Tasks were defined with three criteria: work configuration (fixed, stature-specific); target angle (?15°, 0°, 15°, 30° from vertical); direction of applied hand force (pulling backwards, pushing forwards, downwards, sideways, upwards). Normalised electromyographic activity was greater for fixed configurations, particularly when pulling in a backward direction (total activity = 108.3% maximum voluntary exertion (MVE)) compared to pushing down or forward (total activity ranging from 10.5 to 17.3%MVE). Further, pulling backwards at angles of –15° and 0° showed the highest muscular demand (p < 0.05). These results suggest that, if possible, positioning overhead work in front of the body with exertions directed forwards will result in the lowest upper extremity muscle demand.

Statement of Relevance: Overhead work pervades occupational settings and is associated with risk of upper extremity musculoskeletal disorders. The muscular intensity associated with performing overhead work was assessed in several combinations of work placement and hand force direction. These findings should have utility for designing overhead work tasks that reduce muscular exposure.  相似文献   

5.
《Ergonomics》2012,55(12):1540-1555
Introduction of more non-computer tasks has been suggested to increase exposure variation and thus reduce musculoskeletal complaints (MSC) in computer-intensive office work. This study investigated whether muscle activity did, indeed, differ between computer and non-computer activities. Whole-day logs of input device use in 30 office workers were used to identify computer and non-computer work, using a range of classification thresholds (non-computer thresholds (NCTs)). Exposure during these activities was assessed by bilateral electromyography recordings from the upper trapezius and lower arm. Contrasts in muscle activity between computer and non-computer work were distinct but small, even at the individualised, optimal NCT. Using an average group-based NCT resulted in less contrast, even in smaller subgroups defined by job function or MSC. Thus, computer activity logs should be used cautiously as proxies of biomechanical exposure. Conventional non-computer tasks may have a limited potential to increase variation in muscle activity during computer-intensive office work.  相似文献   

6.
《Ergonomics》2012,55(11):1541-1551
Local muscular fatigue is an important aspect of ergonomic studies. Spectral analysis of electromyographic (EMG) signals may be applied to provide a quantitative measure of the extent of muscular fatigue. The present study was aimed at methodological development of practical and reliable field studies for the shoulder region, EMG signals were recorded during short test contractions performed at regular intervals during work and at rest. Signal analysis was performed using the zero-crossing method. The results show that the zero-crossing method gives results which are as relevant as the MPF-method. The test contraction concept in conjunction with the zero-crossing technique is called Frequency Analysis of Test Contractions (FTC). An evaluation experiment on ten subjects at rest yielded the intrinsic standard deviation of the method and also revealed lateral covariation of the trapezius and infraspinatus muscles.  相似文献   

7.
《Ergonomics》2012,55(11):1036-1051
The objective of this study was to define the quantitative relationship between external dynamic shoulder torques and calibrated perceived muscular effort levels for load delivery tasks, for application in job analyses. Subjects performed a series of loaded reaches and, following each exertion, rated their perceived shoulder muscular effort. Motion and task physical requirements data were processed with a biomechanical upper extremity model to calculate external dynamic shoulder torques. Calculated torque values were then statistically compared to reported calibrated perceived muscular effort scores. Individual subject torque profiles were significantly positively correlated with perceived effort scores (r2 = 0.45–0.77), with good population agreement (r2 = 0.50). The accuracy of the general regression model improved (r2 = 0.72) with inclusion of factors specific to task geometry and individual subjects. This suggests two major conclusions: 1) that the perception of muscular shoulder effort integrates several factors and this interplay should be considered when evaluating tasks for their impact on the shoulder region; 2) the torque/perception relationship may be usefully leveraged in job design and analysis.  相似文献   

8.
《Ergonomics》2012,55(8):1042-1054
Abstract

US large-herd dairy parlour workers experience a high prevalence of musculoskeletal symptoms in the upper extremity. The purpose of this study was to estimate and compare full-shift and task-specific muscle activity of the upper extremity among parlour workers. Surface electromyography data were recorded continuously throughout a full work shift for each participant (n = 60). For a subset of participants (n = 33), muscular effort was estimated for milking task cycles. Lower muscle activity levels and higher per cent muscular rest was observed among rotary parlour participants as compared to herringbone and parallel parlour participants for anterior deltoid, forearm flexor and forearm extensor muscles. These findings suggest rotary parlours may offer workstation designs or work organisational dynamics which may be more beneficial to the health and performance of the worker, as compared to parallel or herringbone parlours.

Practitioner Summary: Study findings suggest milking parlour configurations present different biomechanical demands on workers which may influence worker health and performance. Our findings will enable more informed decisions regarding both engineering (e.g. parlour configuration or milking equipment) and administrative (e.g. work organisation) control strategies for large-herd milking parlours.  相似文献   

9.
Lin JH  McGorry RW  Maikala RV 《Ergonomics》2012,55(3):361-370
Repetitive use of hand-held power tools is associated with work-related upper extremity musculoskeletal disorders. Using a pneumatic nutrunner, 21 men completed twelve 360 repetitive fastener-driving sessions on three joints (hard, soft and control) at slow and fast pace, and two different work:rest patterns. Handgrip force and perceived exertions were collected throughout each session. For the control joint, the mean grip force exerted was 39.6% of maximum voluntary exertion (MVE) whereas during hard and soft joint sessions it was 48.9% MVE and 56.9% MVE, respectively. Throughout each session, the grip force decreased, more while operating soft and hard joints as compared with the control joint (regression slope: ?0.022 and ?0.023, compared with ?0.007 N/drive, respectively), suggesting considerable upper extremity muscular effort by participants during torque buildup. Fast work pace resulted in higher average grip forces by participants but a greater decrease in the force as the session progressed. Providing rest breaks reduced perceived exertions. The findings gain additional knowledge for assembly task design to possibly reduce the hand/arm injury risks for the operator.

Practitioner Summary: Powered hand tools are widely used in assembly and manufacturing industries. However, the nature of their repetitive use on human operator biomechanical and perceptual responses is not fully understood. This study examined work-related risk factors such as joint torque, pace and work:rest ratios on powered hand tool performance.  相似文献   

10.
This study compared muscular and postural stresses, performance and subject preference in women aged 18–40 years using a standard mouse, a vertical mouse and a slanted mouse in three different computer workstation positions. Four tasks were analysed: pointing, pointing-clicking, pointing-clicking-dragging and grasping-pointing the mouse after typing. Flexor digitorum superficialis (FDS) and extensor carpi radialis (ECR) activities were greater using the standard mouse compared to the vertical or slanted mouse. In all cases, the wrist position remained in the comfort zone recommended by standard ISO 11228-3. The vertical mouse was less comfortable and more difficult to use than the other two mice. FDS and ECR activities, shoulder abduction and wrist extension were greater when the mouse was placed next to the keyboard. Performance and subject preference were better with the unrestricted mouse positioning on the desktop. Grasping the mouse after typing was the task that caused the greatest stress.

Practitioner Summary: In women, the slanted mouse and the unrestricted mouse positioning on the desktop provide a good blend of stresses, performance and preference. Unrestricted mouse positioning requires no keyboard, which is rare in practice. Placing the mouse in front of the keyboard, rather than next to it, reduced the physical load.  相似文献   


11.
《Ergonomics》2012,55(9):1200-1219
The objective of this research was to provide guidelines for the reliable assessment of ergonomics exposures in non-routinized work. Using a discrete-interval observational sampling approach, two or three observers collected a total of 5852 observations on tasks performed by three construction trades (iron workers, carpenters and labourers) for periods of several weeks. For each observation, nine exposure variables associated with awkward body postures, tool use and load handling were recorded. The frequency of exposure to each variable was calculated for each worker during each of the tasks on each of the days. ANOVA was used to assess the importance of task in explaining between-worker and within-worker variability in exposures across days. A statistical re-sampling method (bootstrap) was used to evaluate the reliability of exposure estimates for groups of workers performing the same task for different sampling periods. Most exposures were found to vary significantly across construction tasks within trade, and between-worker exposure variability was generally smaller than within-worker exposure variability within task. Bootstrapping showed that the reliability of the group estimates exposure for the most variable exposures within task tended to improve as the assessment periods approached 5 – 6 d, with marginal improvements for longer assessment periods. Reliable group estimates of exposure for the least variable exposures within task were obtained with 1 or 2 d of observation. The results of this study demonstrate that an initial estimate of the important environmental or task sources of exposure variability can be used to develop an efficient sampling strategy that provides reliable estimates of ergonomics exposures during non-routinized work.  相似文献   

12.
The purpose of this study was to examine the variability in muscle activity at rest and work during a repetitive task. A total of 20 participants performed a bimanual push task using three frequencies (4, 8, 16 pushes/min), three loads (1 kg, 2 kg, 4 kg) and two grip conditions (no grip, 30% maximum). The coefficient of variation (CoV) of muscle activity was determined for the anterior deltoid, biceps brachii, extensor digitorum and flexor digitorum superficialis. Faster push frequencies and heavier loads had lower work–rest ratio CoV and higher mean muscle activity (p < 0.01). Sixteen pushes per minute produced the lowest CoV for the anterior deltoid (p < 0.01), while the 1- kg load produced the lowest CoV for the extensor digitorum and flexor digitorum superficialis (p < 0.01). Changes were driven by the rest phase rather than by the work phase, except for grip decreasing forearm muscle CoV. These findings underscore the importance of variability at rest and indicate that low variability of muscle activity is associated with ergonomic risk factors.

Practitioner Summary: Decreased motor variability has been associated with pain and injury. A cyclical push task, evaluated in terms of work and rest phases, found that greater workloads increased variability primarily due to changes in the rest phase. Muscle variability, especially for the rest phase, may provide insight into injury risk.  相似文献   


13.
《Ergonomics》2012,55(6):598-615
The aim of this study was to investigate the possible associations between working technique, sex, symptoms and level of physical load in VDU-work. A study group of 32 employees in the editing department of a daily newspaper answered a questionnaire, about physical working conditions and symptoms from the neck and the upper extremities. Muscular load, wrist positions and computer mouse forces were measured. Working technique was assessed from an observation protocol for computer work. In addition ratings of perceived exertion and overall comfort were collected. The results showed that subjects classified as having a good working technique worked with less muscular load in the forearm (extensor carpi ulnaris p=0.03) and in the trapezius muscle on the mouse operating side (p=0.02) compared to subjects classified as having a poor working technique. Moreover there were no differences in gap frequency (number of episodes when muscle activity is below 2.5% of a reference contraction) or muscular rest (total duration of gaps) between the two working technique groups. Women in this study used more force (mean force p=0.006, peak force p=0.02) expressed as % MVC than the men when operating the computer mouse. No major differences were shown in muscular load, wrist postures, perceived exertion or perceived comfort between men and women or between cases and symptom free subjects. In conclusion a good working technique was associated with reduced muscular load in the forearm muscles and in the trapezius muscle on the mouse operating side. Moreover women used more force (mean force and peak force) than men when operating the click button (left button) of the computer mouse.  相似文献   

14.
Responses to physical and psychosocial exposures can be measured using diverse methods, but their reliability, particularly under multiple exposures, is largely unknown. Five classes of methods were used to assess physiological and subjective responses among 24 participants to four combinations of physical and psychosocial exposures while performing two identical sessions of a simulated overhead manufacturing task. As an exploratory analysis, test–retest reliability was quantified using intraclass correlation coefficients (ICC) and coefficients of variation (CV). Discomfort ratings were reliable under less favorable exposures, and ratings of the psychosocial environment were most reliable under favorable social support. Workload ratings were most reliable with high physical exposure and favorable social support, and task performance was reliable overall. EMG and heart rate had relatively low reliability. Slightly less than half of the variables were considered reliable, but reliability depended on exposure conditions.Relevance to industry: The study provides information on the reliability of commonly used exposure measurement methods. The results can guide the selection of physiological and psychological work outcome measurements in future studies and work evaluations.  相似文献   

15.
Patterns of cervical muscle activity may contribute to overuse injuries in office workers. The purpose of this investigation was to characterise patterns of upper trapezius muscle activity in pain-free office workers using traditional occupational exposure measures and a modified Active Amplitude Probability Distribution Function (APDF), which considers only periods of active muscle contraction. Bilateral trapezius muscle activity was recorded in 77 pain-free office workers for 1–2 full days in their natural work environment. Mean amplitude, gap frequency, muscular rest and Traditional and Active APDF amplitudes were calculated. All measures demonstrated fair to substantial reliability. Dominant muscles demonstrated higher amplitudes of activity and less muscular rest compared to non-dominant, and women demonstrated less muscular rest with no significant difference in amplitude assessed by Active APDF compared to men. These findings provide normative data to identify atypical motor patterns that may contribute to persistence or recurrence of neck pain in office workers.

Practitioner Summary: Upper trapezius muscle activity was characterised in a large cohort of pain-free workers using electromyographic recordings from office environments. Dominant muscles demonstrated higher activity and less rest than non-dominant, and women demonstrated less rest than men. Results may be used to identify atypical trapezius muscle activity in office workers.  相似文献   


16.
《Ergonomics》2012,55(12):2057-2066
Marker-less 2D video tracking was studied as a practical means to measure upper limb kinematics for ergonomics evaluations. Hand activity level (HAL) can be estimated from speed and duty cycle. Accuracy was measured using a cross-correlation template-matching algorithm for tracking a region of interest on the upper extremities. Ten participants performed a paced load transfer task while varying HAL (2, 4, and 5) and load (2.2 N, 8.9 N and 17.8 N). Speed and acceleration measured from 2D video were compared against ground truth measurements using 3D infrared motion capture. The median absolute difference between 2D video and 3D motion capture was 86.5 mm/s for speed, and 591 mm/s2 for acceleration, and less than 93 mm/s for speed and 656 mm/s2 for acceleration when camera pan and tilt were within ± 30 degrees. Single-camera 2D video had sufficient accuracy ( < 100 mm/s) for evaluating HAL.

Practitioner Summary: This study demonstrated that 2D video tracking had sufficient accuracy to measure HAL for ascertaining the American Conference of Government Industrial Hygienists Threshold Limit Value® for repetitive motion when the camera is located within ± 30 degrees off the plane of motion when compared against 3D motion capture for a simulated repetitive motion task.  相似文献   

17.
The aim of this study was to investigate the possible associations between working technique, sex, symptoms and level of physical load in VDU-work. A study group of 32 employees in the editing department of a daily newspaper answered a questionnaire, about physical working conditions and symptoms from the neck and the upper extremities. Muscular load, wrist positions and computer mouse forces were measured. Working technique was assessed from an observation protocol for computer work. In addition ratings of perceived exertion and overall comfort were collected. The results showed that subjects classified as having a good working technique worked with less muscular load in the forearm (extensor carpi ulnaris p=0.03) and in the trapezius muscle on the mouse operating side (p=0.02) compared to subjects classified as having a poor working technique. Moreover there were no differences in gap frequency (number of episodes when muscle activity is below 2.5% of a reference contraction) or muscular rest (total duration of gaps) between the two working technique groups. Women in this study used more force (mean force p=0.006, peak force p=0.02) expressed as % MVC than the men when operating the computer mouse. No major differences were shown in muscular load, wrist postures, perceived exertion or perceived comfort between men and women or between cases and symptom free subjects. In conclusion a good working technique was associated with reduced muscular load in the forearm muscles and in the trapezius muscle on the mouse operating side. Moreover women used more force (mean force and peak force) than men when operating the click button (left button) of the computer mouse.  相似文献   

18.
《Ergonomics》2012,55(8):733-744
An experimental study was conducted to evaluate physical risk factors associated with the use of touchscreen in a desktop personal computer (PC) setting. Subjective rating of visual/body discomfort, shoulder and neck muscle activity, elbow movement and user-preferred positions of the workstation were quantified from 24 participants during a standardised computer use task with a standard keyboard and a mouse (traditional setting), with a touchscreen and the standard keyboard (mixed-use condition) and with the touchscreen only. The use of a touchscreen was associated with a significant increase of subjective discomfort on the shoulder, neck and fingers, myoelectric activity of shoulder and neck muscles and percentage of task duration that arms were in the air. Participants placed the touchscreen closer and lower when using touch interfaces compared with the traditional setting. Results suggest that users would need more frequent breaks and proper armrests to reduce physical risks associated with the use of a touchscreen in desktop PC settings.

Statement of Relevance: In this study, subjective discomfort, work posture and muscle activity of touchscreendesktop PC users were quantitatively evaluated. The findings of this study can be used to understand potential risksfrom the use of a touchscreen desktop PC and to suggest design recommendations for computer workstations with the touchscreen.  相似文献   

19.
《Ergonomics》2012,55(11):1404-1411
Clinically, over-activation of upper trapezius (UT) muscular activity is a common cause of symptoms in computer users. The purpose of this study was to investigate the correlation between trapezius muscular activity and typing speed with and without taping. Twelve participants performed a typing task for 15 min with and without taping on the UT muscle. Electromyography (EMG) of the muscular activity of UT and lower trapezius (LT) was recorded. With or without taping, there was a significantly positive correlation (r = 0.40, p = 0.04) between typing speed and UT/LT. Additionally, UT and UT/LT ratios were lower with taping than without taping (difference = 5.2% and 26.9%). The LT ratio was higher with taping than without taping (difference = 5.8%). Taping can alter the muscular activity of the trapezius during typing and may have the potential to be applied in computer users to prevent over-activation of UT muscular activity.

Practitioner Summary: The effect of taping was tested on typing speed and trapezius muscular activity. With or without taping, typing speed was correlated with trapezius activity. The muscle activity of the trapezius, however, was lower with taping than without taping. Thus, taping has the potential to prevent over-activation of UT muscular activity during typing.  相似文献   

20.
The effect of wrist orthoses on forearm muscle activity   总被引:1,自引:0,他引:1  
A general hypothesis is that a wrist orthosis reduces the wrist extensor muscle load. The aim of this study was to investigate the effects of a completely stiff wrist orthosis (SO) and a commercially available wrist orthosis (CO) on flexor and extensor electromyographic (EMG)-activity in a standardised intermittent gripping task and during standardised manual work tasks. Surface EMG from two forearm flexor and two extensor muscles was recorded. The target grip forces were 5%, 20% and 40% of maximal voluntary contraction (MVC). During the grip contraction phase CO had no effect on the EMG-readings. SO resulted in higher EMG activity than when gripping with CO and with no orthosis (NO), especially when gripping with 40% MVC. During the relaxation phase neither CO nor SO had any effect on the extensors. For the flexors the SO gave higher EMG-readings than when gripping with CO and NO, especially at 40% MVC. In conclusion the wrist orthoses tested did not reduce the EMG-activity from the flexors or the extensors during gripping or manual tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号