首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
差分演化的收敛性分析与算法改进   总被引:11,自引:0,他引:11       下载免费PDF全文
为了分析差分演化(differential evolution,简称DE)的收敛性并改善其算法性能,首先将差分算子(differential operator,简称DO)定义为解空间到解空间的笛卡尔积的一种随机映射,利用随机泛函理论中的随机压缩映射原理证明了DE的渐近收敛性;然后,在\"拟物拟人算法\"的启发下,通过对DE各进化模式的共性特征与性能差异的分析,提出了一种具有多进化模式协作的差分演化算法(differential evolution with multi-strategy cooperating evolution,简称MEDE),分析了它所具有的隐含特性,并在多模式差分算子(multi-strategy differential operator,简称MDO)定义的基础上证明了它的渐进收敛性.对5个经典测试函数的仿真计算结果表明,与原始的DE,DEfirDE和DEfirSPX等算法相比,MEDE算法在求解质量、适应性和鲁棒性方面均具有较明显的优势,非常适于求解复杂高维函数的数值最优化问题.  相似文献   

2.
提出了一种基于两种进化模式的双种群协作差分演化算法(DPDE)。在DPDE中,两个种群通过协作共同进化。首先,各种群以不同的进化模式,通过个体竞争实现自身进化;其次,种群之间基于局部信息传递和共享机制,通过随机交换个体方式相互协作、共同进化,既实现了不同进化模式间的优势互补,又可以改善种群的多样性。对于5个典型Benchmark测试函数,通过与DE和DEfirDE算法的比较表明:DPDE具有更好的全局收敛性和鲁棒性,特别适合求解高维多模态函数的最优化问题。  相似文献   

3.
差分进化算法是一种基于种群差异的优化算法,主要应用于解决连续空间的优化问题。目前,研究人员主要在算法的改进和应用方面研究差分进化算法,很少从理论角度对其进行研究。为了分析差分进化算法的收敛性,定义优化个体、种群的状态转移,并提出种群的最优状态集合。根据差分进化算法的操作算子计算出个体的状态迁移概率,并证明种群状态序列是有限齐次马尔可夫链,进而建立差分进化算法的马尔可夫链模型;最后,证明差分进化算法无法保证全局收敛。理论研究结果表明,适当保证种群的多样性能够提高差分进化算法的性能。  相似文献   

4.
多群体差分演化算法及其应用   总被引:1,自引:0,他引:1  
廖锋  高兴宝 《计算机仿真》2011,28(1):230-233
差分演化算法的变异机制没有充分利用种群的信息,导致变异是盲目的,使计算机速度受到限制.根据粒子群算法信息共享机制的启发,提出了一种多群体差分演化算法,算法将整个种群分成多个子种群,每个子种群通过借鉴本种群的内部经验与整个种群的外部经验对变异进行指导.一方面,由于变异操作借鉴了子种群的局部信息和整个种群的全局信息,提高了...  相似文献   

5.
求解多选择背包问题的改进差分演化算法   总被引:3,自引:0,他引:3  
首先将差分演化算法(DEA)的演化机制归结为差异算子(DO)和选择算子(SO)的作用,然后基于离散域上的多选择背包问题(MCKP),通过重新定义DEA算法的差异算子中的三种基本运算,并采用个体正整数编码方法和处理非正常编码的快速微调策略,提出了一种求解MCKP问题的改进差分演化算法(MDEA),第一次将DEA用于求解组合最优化问题.对经典MCKP问题实例的计算表明:MDEA算法不但是可行的,而且是高效的.  相似文献   

6.
差分演化算法有局部搜索能力不足、容易跌入局部最优等缺点,其搜索性能主要依赖于对杂交概率和缩放因子的设置。为了改善上述缺陷,对带归档的自适应差分演化算法JADE进行深入的研究与分析,提出了改进的自适应差分演化算法ZJADE。该算法采用斜帐篷混沌映射函数初始化种群,在每次迭代中为每个个体分别产生满足正态分布、柯西分布的杂交概率和满足正态分布的缩放因子,并且记录成功变异个体的杂交概率和缩放因子,引入统计杂交概率,采用两种策略自适应地更新杂交概率。在13个经典测试函数上将ZJADE算法与多种经典自适应差分演化算法进行对比,实验结果表明,ZJADE算法在解的精度与收敛速度上更优,具有更好的搜索性能。  相似文献   

7.
为了提高差分进化算法的寻优速度、克服启发式算法常见的早熟收敛问题, 提出一种基于帐篷映射(Tent)的自适应混沌嵌入式差分进化算法(CLSDE). 算法采用 Tent 映射生成的混沌序列来取代基本DE算法选择操作中的随机数, 充分利用了混沌运动的随机性、遍历性和规律性. 通过与混沌PSO算法与普通的DE算法比较, 测试函数仿真结果表明, 该算法具有良好的全局搜索能力, 寻优精度较高, 收敛速度快, 鲁棒性好.  相似文献   

8.
演化算法的收敛性分析及算法改进   总被引:3,自引:2,他引:3  
文章利用马尔可夫随机过程刻画了演化算法,证明了标准演化算法是不收敛的,说明了演化算法收敛于最优解的必要条件:非完全遍历性。并论证了采取精华保留策略的标准遗传算法以概率1收敛于最优解,并据此分析了一个典型实例———GTGA算法的收敛性及其算法改进方案。  相似文献   

9.
差分演化算法(differential evolution,DE)是一种模拟生物演化过程的随机搜索方法,具有收敛速度快,鲁棒性好等优点。目前DE有多种交叉和变异策略,它们在求解各类优化问题时表现出各自不同的性能。介绍了10种差分演化算法的更新策略,并利用标准测试函数集对它们进行了全面与系统的实验比较。通过分析采用这些策略的DE算法在不同解空间及进化各阶段的收敛曲线特点,对比总结了不同版本的DE算法在各类环境下的搜索性能。该研究一方面能够为DE算法的实际应用提供技术指导,帮助学者选择合适的DE更新策略以更好地解决工程问题;另一方面能够为新型DE更新策略的开发和自适应DE算法的设计提供理论基础。  相似文献   

10.
提出一种基于差分演化与猫群算法融合的群体智能算法。该算法基于猫群算法的两种行为模式,引进差分演化的思想,根据分组率随机把群体分成两个种群,一个种群执行猫群算法搜寻模式,另一种群执行差分变异模式,算法采用一种信息共享机制,使两个种群在搜索最优解时可以实现协同进化,信息交流。既实现了不同进化模式间的优势互补,又可以增加种群的多样性。对5个基准函数进行仿真实验并分别与DE和CSO进行比较,表明混合算法同时具有全局搜索和局部搜索最优解性能,收敛速度快,计算精度高,更适合用于求解高维复杂函数。  相似文献   

11.
多智能体差分进化算法   总被引:1,自引:0,他引:1  
基于多智能体与差分进化算法的各自优势,充分地将对多智能体环境的感知和反作用于环境的能力与差分进化速度和全局寻优能力有机结合,提出一种多智能体差分进化算法.引入差分进化算子以提高智能体更新速度并保持群体多样性,同时应用正交交叉算子以改善智能体协作特性确保有效竞争,并通过局部寻优算子提高算法的寻优精度.对几种典型测试函数进行了测试,实验结果表明所提出的算法具有较强的全局寻优能力.  相似文献   

12.
多资源均衡优化的布谷鸟算法   总被引:1,自引:0,他引:1  
针对标准多目标布谷鸟算法(CSA)后期收敛速度慢、收敛精度不高的缺陷,提出一种求解多资源均衡优化问题的改进多目标布谷鸟算法。首先,引入非均匀变异算子,以均衡算法的全局搜索能力和局部寻优能力;然后,引进差分进化算子,促进群体间的合作和信息交流,提高算法的收敛精度。通过算例测试表明,改进的多目标布谷鸟算法比标准多目标算法和VEPSO-BP算法具有更好的全局收敛性。  相似文献   

13.
针对传统方法的随机盲目性和易陷入局部最优值等缺陷,提出一种求解无约束优化问题的知识进化算法(简称为UOP-KEA),并对算法的全局收敛性进行了分析.该算法的主要思想是:首先建立初始知识库,然后利用传承算子来实现对优秀知识个体的传承,利用创新算子来产生新的知识个体,利用更新算子来更新知识库,从而实现知识的进化,最后从知识库的最优知识个体中获取问题的最优解.将该算法应用于无约束非线性测试函数的最小值优化求解,获得了成功的结果.与遗传算法相比,该算法可以使用较小的种群规模,以较快的速度寻找到全局最优解,表明了它的可行性和有效性.  相似文献   

14.
一种新的差分进化算法   总被引:2,自引:0,他引:2  
针对高维复杂函数的优化问题,提出了一种新的差分进化算法(NDE)。该算法在运行中根据迭代次数自动地调整交叉概率因子,从而在搜索的初始阶段提高种群多样性,而在搜索后期加强局部搜索能力。对几种经典函数的测试表明,新算法不仅具有很强的全局搜索能力,而且能有效避免早熟收敛问题。  相似文献   

15.
改进差分进化策略在多峰值函数优化中的应用   总被引:2,自引:0,他引:2  
针对差分演化算法与进化策略算法中所存在的不足,将模拟退火算子引入到差分演化算法的变异操作中,这样有助于在进化前期进行全局搜索,后期进行局部搜索;在标准进化策略的基础上,加入差分变异操作,提出了一种新的差分进化策略双重变异算法。通过测试算例可看出,该方法在多峰值函数优化问题中,具有求解精度较高,收敛速度较快等特点。  相似文献   

16.
    
In this paper attention is concentrated on the mapping of computationally intensive multi‐task applications onto shared computational grids. This problem, already known to be as NP‐complete in parallel systems, becomes even more arduous in such environments. To find a near‐optimal mapping solution a parallel version of a Differential Evolution algorithm is presented and evaluated on different applications and operating conditions of the grid nodes. The purpose is to select for a given application the mapping solutions that minimize the greatest among the time intervals which each node dedicates to the execution of the tasks assigned to it. The experiments, effected with applications represented as task interaction graphs, demonstrate the ability of the evolutionary tool to perform multisite grid mapping, and show that the parallel approach is more effective than the sequential version both in enhancing the quality of the solution and in the time needed to get it. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
为了改善帝国竞争算法(imperialist competitive algorithm,ICA)易早熟收敛、精度低等缺点,提出了两种基于生物进化的改进ICA算法。针对殖民地改革算子可能使势力较强的殖民地丢失,导致寻优精度降低的不足,引入了一种微分进化算子,利用殖民地之间的信息交互产生新的殖民地,在增强群体多样性的同时保留了优秀个体。另外,针对帝国之间缺乏有效的信息交互这一情况,引入了克隆进化算子,对势力较强的国家进行克隆繁殖,并经过克隆群体的高频变异和随机交叉,选择势力较强的国家取代势力较弱的国家,从而有效地引导算法向最优解方向搜索。将算法应用于6个基准函数和6个经典复合函数优化问题,并与其他ICA改进算法进行比较,结果表明,基于生物进化的ICA算法在收敛精度、收敛速度及稳定性上有显著提高。  相似文献   

18.
针对差分进化算法DE 传统变异策略不能有效平衡全局搜索和局部搜索,并且算子固定,导致算法早收敛、搜索效率较低。基于DE 变异策略性能,提出一种混合变异策略,力图平衡算法探索和开发能力,使得前期增强全局搜索,保持种群多样性; 后期偏重局部搜索,尽快收敛到全局最优值。同时操作算子采用随机正态缩放因子F 和时变交叉概率因子CR,进一步改善算法性能。几个典型Benchmarks 测试函数实验表明: 该改进型差分进化算法能有效避免早收敛,较好地提高算法的全局收敛能力和搜索效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号