首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The aim of this paper is to develop a neuro-fuzzy-sliding mode controller (NFSMC) with a nonlinear sliding surface for a coupled tank system. The main purpose is to eliminate the chattering phenomenon and to overcome the problem of the equivalent control computation. A first-order nonlinear sliding surface is presented, on which the developed sliding mode controller (SMC) is based. Mathematical proof for the stability and convergence of the system is presented. In order to reduce the chattering in SMC, a fixed boundary layer around the switch surface is used. Within the boundary layer, where the fuzzy logic control is applied, the chattering phenomenon, which is inherent in a sliding mode control, is avoided by smoothing the switch signal. Outside the boundary, the sliding mode control is applied to drive the system states into the boundary layer. Moreover, to compute the equivalent controller, a feed-forward neural network (NN) is used. The weights of the net are updated such that the corrective control term of the NFSMC goes to zero. Then, this NN also alleviates the chattering phenomenon because a big gain in the corrective control term produces a more serious chattering than a small gain. Experimental studies carried out on a coupled tank system indicate that the proposed approach is good for control applications.  相似文献   

2.
The operation efficiency of the manipulator is placed in the primary position in automatic production. This paper proposes a coordinated control strategy for joint servo and visual servo to enable timely transfer and accurate gripping in the working area. Aiming at the issues of chattering and slow convergence of traditional sliding mode controller, a fast variable power reaching rate on the basis of the non-singular fast terminal sliding mode controller is proposed, which can effectively reduce the convergence time and chattering. For the purpose of addressing the problem that the traditional visual servo control method is sensitive to the environment, a visual servo controller based on integral sliding mode is proposed, to ensure the favorable positioning accuracy of the manipulator. Based on the two proposed controllers mentioned above, a coordinated control strategy is used to implement the control of the manipulator. Finally, the upper computer software is developed using the C# programming language to monitor the workstation. The feasibility of the above-mentioned method is verified through multiple simulations and experiments.  相似文献   

3.
Conventional sliding mode control (SMC) has been extensively applied in controlling spacecrafts because of its appealing characteristics such as robustness and a simple design procedure. Several methods such as second-order sliding modes and discontinuous controllers are applied for the SMC implementation. However, the main problems of these methods are convergence and error tracking in a finite amount of time. This paper combines an improved dynamic sliding mode controller and model predictive controller for spacecrafts to solve the chattering phenomenon in traditional sliding mode control. To this aim, this paper develops dynamic sliding mode control for spacecraft’s applications to omit the chattering issue. The proposed approach shows robust attitude tracking by a set of reaction wheels and stabilizes the spacecraft subject to disturbances and uncertainties. The proposed method improves the performance of the SMC for spacecraft by avoiding chattering. A set of simulation results are provided that show the advantages and improvements of this approach (in some sense) compared to SMC approaches.  相似文献   

4.
In this paper, first-order and second-order sliding mode controllers for underactuated manipulators are proposed. Sliding mode control(SMC) is considered as an effective tool in different studies for control systems. However, the associated chattering phenomenon degrades the system performance. To overcome this phenomenon and track a desired trajectory, a twisting, a supertwisting and a modified super-twisting algorithms are presented respectively. The stability analysis is performed using a Lyapunov function for the proposed controllers. Further, the four different controllers are compared with each other. As an illustration, an example of an inverted pendulum is considered. Simulation results are given to demonstrate the effectiveness of the proposed approaches.  相似文献   

5.
A robust sliding mode approach combined with a field oriented control (FOC) for induction motor (IM) speed control is presented. The proposed sliding mode control (SMC) design uses an adaptive switching gain and an integrator. This approach guarantees the same robustness and dynamic performance of traditional SMC algorithms. And at the same time, it attenuates the chattering phenomenon, which is the main drawback in actual implementation of this technique. This approach is insensitive to uncertainties and permits to decrease the requirement for the bound of these uncertainties. The stability and robustness of the closed- loop system are proven analytically using the Lyapunov synthesis approach. The proposed method attenuates the effect of both uncertainties and external disturbances. Experimental results are presented to validate the effectiveness and the good performance of the developed method.  相似文献   

6.
A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining feedback correction and receding horizon optimization methods which are extensively applied on predictive control strategy, a discrete-time variable structure control law is constructed. The closed-loop systems are proved to have robustness to uncertainties with unspecified boundaries. Numerical simulation and pendulum experiment results illustrate that the closed-loop systems possess desired performance, such as strong robustness, fast convergence and chattering elimination.  相似文献   

7.
This paper develops a new method to deal with the robust H-infinity control problem for a class of uncertain switched nonlinear systems by using integral sliding mode control. A robust H-infinity integral sliding surface is constructed such that the sliding mode is robust stable with a prescribed disturbance attenuation level γ for a class of switching signals with average dwell time. Furthermore, variable structure controllers are designed to maintain the state of switched system on the sliding surface from the initial time. A numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

8.
Two approximation laws of sliding mode for discrete-time variable structure control systems are proposed to overcome the limitations of the exponential approximation law and the variable rate approximation law. By applying the proposed approximation laws of sliding mode to discrete-time variable structure control systems, the stability of origin can be guaranteed, and the chattering along the switching surface caused by discrete-time variable structure control can be restrained effectively. In designing of approximation laws, the problem that the system control input is restricted is also considered, which is very important in practical systems. Finally a simulation example shows the effectiveness of the two approximation laws proposed.  相似文献   

9.
A new dynamic terminal sliding mode control (DTSMC) technique is proposed for a class of single-input and single-output (SISO) uncertain nonlinear systems. The dynamic terminal sliding mode controller is formulated based on Lyapunov theory such that the existence of the sliding phase of the closed-loop control system can be guaranteed, chattering phenomenon caused by the switching control action can be eliminated, and high precision performance is realized. Moreover, by designing terminal equation, the output tracking error converges to zero in finite time, the reaching phase of DSMC is eliminated and global robustness is obtained. The simulation results for an inverted pendulum are given to demonstrate the properties of the proposed method.  相似文献   

10.
Finite time convergent control using terminal sliding mode   总被引:2,自引:0,他引:2  
A method for terminal sliding mode control design is discussed. As we know, one of the strong points of terminal sliding mode control is its finite-time convergence to a given equilibrium of the system under consideration, which may be useful in specific applications. The proposed method, different from many existing terminal sliding model control design methods, is studied, and then feedback laws are designed for a class of nonlinear systems, along with illustrative examples.  相似文献   

11.
The effective application of sliding mode control to mechanical systems is not straightforward because of the sensitivity of these systems to chattering. Higher-order sliding modes can counteract this phenomenon by confining the switching control to the higher derivatives of the mechanical control variable, so that the latter results are continuous. Generally, this approach requires the availability of a number of time derivatives of the sliding variable, and, in the presence of noise, this requirement could be a practical limitation. A class of second-order sliding mode controllers, guaranteeing finite-time convergence for systems with relative degree two between the sliding variable and the switching control, could be helpful both in reducing the number of differentiator stages in the controller and in dealing with unmodelled actuator dynamics. In this paper different second-order sliding mode controllers, previously presented in the literature, are shown to belong to the above cited class, and some challenging control problems involving mechanical systems are addressed and solved. Simulations and experimental results are provided throughout the paper.  相似文献   

12.
Principles of 2-sliding mode design   总被引:3,自引:0,他引:3  
Second-order sliding modes are used to keep exactly a constraint of the second relative degree or just to avoid chattering, i.e. in the cases when the standard (first order) sliding mode implementation might be involved or impossible. Design of a number of new 2-sliding controllers is demonstrated by means of the proposed homogeneity-based approach. A recently developed robust exact differentiator being applied, robust output-feedback controllers with finite-time convergence are produced, capable to control any general uncertain single-input-single-output process with relative degree 2. An effective simple procedure is developed to attenuate the 1-sliding mode chattering. Simulation of new controllers is presented.  相似文献   

13.
Second‐order sliding mode control (2‐smc) and dynamic sliding mode control (dsmc) eliminate the disturbing characteristic of chattering in static sliding mode control under the assumption that the derivative of the sliding surface is available or complex inequalities at the acceleration level can be constructed. In this paper, passivity‐based adaptive and non‐adaptive chattering‐free sliding mode controllers are proposed assuming that the upper bound of the norm of the derivative of the sliding surface is available, a weaker and easy to implement assumption in comparison to those of 2‐smc and dsmc. The closed‐loop system accounts explicitly for the invariance condition without reaching phase, and therefore for a desired transient response with global exponential convergence of tracking errors. Preliminary experiments are presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
For the system with sliding mode controllers operated by on/off switches, ‘chattering’ appears in the output of the system when its switching frequency is restricted. In power systems, the switching frequency is commonly limited to prevent power losses, and chattering or ‘ripple’ appears especially in the system current. Common methods to decrease such ripple are based on ‘harmonic cancellation’ using the multiple number of phase channels having the desired phase shift that brings cancellation in the sum of outputs from the individual channels. In this article, a design principle of sliding mode control for a multiphase controller is proposed. The methodology is originated from the concept of multidimensional sliding mode and provides desired phase shifts between phases with the help of adaptive width for the hysteresis loops in switching elements. The chattering suppression effect is demonstrated by simulations for the DC–DC converter systems in various situations.  相似文献   

15.
本文采用滑动模态控制方法对挠性航天器设计了姿态镇定控制律.首先,建立了挠性航天器的数学模型.其中,挠性航天器的运动学方程采用姿态四元数描述.然后,通过引入动态切换函数,设计挠性航天器的动态滑模姿态控制律.该控制律能对滑模姿态控制律中由符号函数项引起的抖振进行抑制.采用Lyapunov方法证明了所设计的动态滑模姿态控制律能使闭环航天器姿态系统稳定.最后,通过数值仿真例子验证了所提出方法的有效性.  相似文献   

16.
Higher-order sliding modes,differentiation and output-feedback control   总被引:2,自引:0,他引:2  
Being a motion on a discontinuity set of a dynamic system, sliding mode is used to keep accurately a given constraint and features theoretically-infinite-frequency switching. Standard sliding modes provide for finite-time convergence, precise keeping of the constraint and robustness with respect to internal and external disturbances. Yet the relative degree of the constraint has to be 1 and a dangerous chattering effect is possible. Higher-order sliding modes preserve or generalize the main properties of the standard sliding mode and remove the above restrictions. r-Sliding mode realization provides for up to the rth order of sliding precision with respect to the sampling interval compared with the first order of the standard sliding mode. Such controllers require higher-order real-time derivatives of the outputs to be available. The lacking information is achieved by means of proposed arbitrary-order robust exact differentiators with finite-time convergence. These differentiators feature optimal asymptotics with respect to input noises and can be used for numerical differentiation as well. The resulting controllers provide for the full output-feedback real-time control of any output variable of an uncertain dynamic system, if its relative degree is known and constant. The theoretical results are confirmed by computer simulation.  相似文献   

17.
研究自治供电系统 (ASES)控制问题, 基于“状态空间区域划分”和“切换控制”原理, 提出一种混合型控制器. 仿真表明, 相比于近年来文献 [1]中提出的动态滑模变结构控制方案, 在保持系统基本性能前提下, 可有效克服该方案中不可避免的抖振与高频切换等严重问题.  相似文献   

18.
自治供电系统的一种混合控制   总被引:1,自引:0,他引:1  
研究自治供电系统(ASES)控制问题,基于"状态空间区域划分"和"切换控制"原理,提出一种混合型控制器.仿真表明,相比于近年来文献[1]中提出的动态滑模变结构控制方案,在保持系统基本性能前提下,可有效克服该方案中不可避免的抖振与高频切换等严重问题.  相似文献   

19.
Switched position control algorithms are developed to globally stabilize friction mechanical manipulators around a desired position. Both static and dynamic position feedback designs are presented. The controllers constructed, referred to as chattering controllers, do not rely on the generation of sliding motions while providing robustness features similar to those possessed by their sliding mode counterparts. Stability analysis is given within the Lyapunov vector functions framework extended to discontinuous dynamic systems. Performance issues of the chattering controllers are evaluated in an experimental study of a three degrees-of-freedom robot manipulator.  相似文献   

20.
In this study, different controllers for control of fractional-order coronary artery system in the presence of external disturbance are designed. Using sliding mode, the proposed type 1 and type 2 fuzzy methods, the suitable controllers are proposed. In sliding mode control, a fractional sliding surface is presented and the control signal is modified to prevent chattering in the control system. With mathematical analysis, a type of membership function is suggested which has better performance in the fractional order system. Also, a rule-base is presented which leads to better results in type 1 and type 2 fuzzy controllers. The risk of the proposed controllers in different conditions is analyzed. Finally, according to the other analyzing methods, it is shown that this analyzing method has more accurate results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号