首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 31 毫秒

1.  基于Log-Gabor和ULBP改进算法的人脸识别  
   李丹丹  张奇志  周亚丽《北京机械工业学院学报》,2014年第5期
   为进一步提升人脸识别系统的识别率,加强其对光照、表情、姿态变化的鲁棒性,针对人脸识别中的特征提取问题,提出一种基于Log-Gabor与均匀局部二值模式(Uniform Local Binary Pattern,ULBP)改进算法的人脸识别方法。该算法采用多尺度、多方向Log-Gabor滤波器对图像进行滤波来提取Log-Gabor特征,再通过旋转不变均匀模式的LBP进行运算编码,并利用局部空间直方图来描述人脸,最后通过加权的卡方距离对直方图匹配完成人脸识别。在Yale、GT人脸数据库上的测试结果表明,该方法具有更好识别性能,且对环境鲁棒性较好。    

2.  基于局部Gabor三值模式的人脸识别  
   张军  张奇志  周亚丽  向阳《北京机械工业学院学报》,2013年第2期
   针对人脸识别中的鲁棒性问题,提出一种基于局部Gabor三值模式的人脸描述与识别方法。首先,对归一化的人脸图像进行多方向、多分辨率的Gabor滤波,提取对应的Gabor幅值域图谱(GMMs),然后在每个幅值域图谱上采用局部三值模式(LTP)抽取局部邻域关系模式,并由这些模式的区域直方图形成序列来描述人脸。最后通过加权的卡方距离对训练图像和测试图像的直方图进行匹配。Gabor变换、LTP、空间区域直方图的采用使得该方法对光照变化、表情变化等具有良好的鲁棒性。在ORL、Yale、GT人脸库上实验,结果表明该方法具有更高的识别率。    

3.  基于Gabor小波与LBP直方图序列的人脸年龄估计  
   黄兵  郭继昌《数据采集与处理》,2012年第27卷第3期
   提出了一种基于Gabor小波和局域二值模式(Local binary pattern,LBP)直方图序列的人脸年龄估计方法。首先对人脸图像提取多方向与多尺度的Gabor幅值域图谱(Gabor magnitude maps,GMMs);然后采用基于局部特征的LBP算子对GMMs编码,并对之分块,由各子块的直方图序列来描述人脸;为进一步降低人脸特征维数,再对人脸直方图序列特征应用主成分分析(PCA);最后使用支持向量机回归(SVR)的LOPO策略对人脸年龄库进行训练和测试。实验结果表明,该方法可以较为快速有效地对人脸图像进行年龄估计。    

4.  基于多级Gabor变换序列特征的人脸识别  
   高涛《计算机工程》,2012年第38卷第13期
   鉴于Gabor特征对光照、表情等变化具有鲁棒性,在寻找局部细节特征和全局轮廓特征的描述方面,提出一种基于多级局部多通道Gabor变换序列特征的人脸描述与识别方法。对人脸图像进行多级分块和对局部子块进行多方向、多分辨率Gabor小波滤波,并提取其对应不同方向、不同尺度的多个Gabor幅值域图谱(LGMM),将各级子图像的图谱LGMM进行连接后形成多级Gabor幅值域图谱,使用径向基网络对特征进行识别。对人脸库ORL和YEL的识别实验进行对比,结果验证了该方法的有效性。    

5.  基于多尺度LBP的人脸识别  
   赵怀勋  徐锋  陈家勇《计算机应用与软件》,2012年第1期
   提出一种基于多尺度LBP(Local Binary Pattern)的人脸识别算法。建立人脸图像高斯差分尺度空间,计算尺度空间图像的LBP特征,将LBP特征图像划分为互不重叠的特征区域,然后分别进行直方图统计,最后将所有区域的LBP直方图序列连接起来得到多尺度LBP特征,采用最近邻分类器对人脸图像分类识别。实验分析表明,多尺度LBP特征具有较强的人脸图像描述能力,能够提取到更加丰富的全局信息,鲁棒性强,在识别率和识别速度上均比SIFT算法高。    

6.  融合多通道信息的二维人脸识别  
   唐恒亮  孙艳丰  尹宝才  盖赟《北京工业大学学报》,2011年第37卷第12期
   为充分提取人脸图像信息,进一步提高人脸识别效率,提出了一种融合图像多通道信息的二维人脸识别方法.该方法利用Haar小波变换将人脸图像变换到频率域,并获得图像4个频率域的信息;对每个频率域的图像,通过局部二值模式(LBP)进行统计编码,并提出基于HaarLBP直方图序列的人脸图像表征方法;提出2种直方图序列的匹配算法,并通过分析各个频域图像信息对识别的贡献率,进一步融合4通道图像信息进行人脸识别.在ORL和Yale人脸库上的实验结果证明,提出的识别方法对于人脸姿态、表情和光照变化有一定的鲁棒性.    

7.  一种基于LBP-EHMM的人脸识别算法  
   裴永杰  李涛《数字社区&智能家居》,2013年第7期
   针对实时人脸识别易受光照变化影响的问题,提出了一种将局部二值模式(Local Binary Patterns,LBP)与嵌入式隐马尔可夫模型(Embedded Hidden Markov Model,EHMM)相结合的人脸识别方法。该方法首先对输入的人脸图像进行LBP预处理,接着对其进行特征向量提取,最后把提取的特征观察向量送入EHMM进行训练或识别。在多个人脸数据库上进行了实验,结果表明该文算法对光照具有较好的鲁棒性,提高了识别率。    

8.  一种基于肤色与LBP特征融合的人脸跟踪算法  
   王传旭  刘云  李作勇《数据采集与处理》,2010年第25卷第2期
   针对目前人脸跟踪方法易受光照变化和背景相近色的干扰,跟踪效果有时不佳或失效的问题,提出引入LBP(Local binary pattern)局部纹理特征,采用LBP直方图和颜色直方图相融合作为人脸特征描述的粒子滤波人脸跟踪方法.该方法在全局颜色和局部LBP纹理两个层次和特征线索上对人脸进行描述.实验结果表明,该方法较单一特征跟踪方法更具鲁棒性.此外,由于人脸目标的运动通常为非匀速运动,为了提高粒子传播的有效性和指导性,本文对人脸跟踪状态方程进行了改进.实验证明,改进后的人脸跟踪算法在各种复杂背景、旋转遮挡和人脸目标非匀速运动的情况下均能取得较好的跟踪效果.    

9.  结合对比度信息与LBP的分块人脸识别  
   曹红根  袁宝华  朱辉生《山东大学学报(工学版)》,2012年第42卷第4期
   基于局部二值模式(local binary pattern,LBP)的特征提取方法忽略了图像灰度值变化的强度。针对这一问题,提出了一种结合对比度信息和LBP进行人脸识别的方法。首先采用LBP算子、VAR方差(variance,VAR)算子分别提取分块人脸灰度图像的LBP直方图序列(local binary pattern histogram sequence,LBPHS)和VAR直方图序列(variance histogram sequence,VARHS),然后将LBPHS和VARHS串联成LBP/VARHS,最后根据最近邻原则进行人脸识别。该算法能够提取有效的人脸纹理信息,而且能够大幅度地降低训练数据量,并且数据量的维数与原始图像大小无关。在ORL和YALE标准人脸数据库上的实验表明,该方法应用于人脸识别中,具有较高的识别率。    

10.  采用LBP金字塔的人脸描述与识别  被引次数:9
   王玮  黄非非  李见为  冯海亮《计算机辅助设计与图形学学报》,2009年第21卷第1期
   为了有效地提取人脸图像的全局和局部特征以提高人脸识别的性能,提出一种基于LBP金字塔特征的人脸描述与识别算法.首先通过多尺度分析构建人脸图像金字塔;然后采用LBP算子提取各层图像的LBP特征谱,建立图像的LBP金字塔;最后对LBP金字塔各层特征谱进行分块统计,并将各层的统计直方图序列连接起来作为人脸的鉴别特征用于分类识别.该算法在ORL和FERET人脸数据库上取得了较高的人脸识别率.实验分析表明,LBP金字塔特征具有较强的人脸描述能力和可鉴别性,且对光照、人脸表情及位置的变化具有较高的鲁棒性.    

11.  基于嵌入式人脸采集前端的人脸识别系统研究  被引次数:1
   周鹏飞《电子工程师》,2013年第6期
   研究一种结合数字信号处理器(Digital signal processor,DSP),网络传输技术和后台人脸识别相结合的人脸识别系统,该系统是针对监控网络中人脸识别机制问题提出的一种解决方案。人脸识别模块利用局部Gabor二值模式(Local gabor binary pattern,LGBP)直方图序列、直方图序列相似度和最近邻分类器相结合的识别方法,并通过实验验证系统的有效性。    

12.  融合LBP和局部稀疏表示的人脸表情识别  
   唐恒亮  孙艳丰  朱杰  赵明茹《计算机工程与应用》,2014年第15期
   为更好获取人脸局部表情特征,提出了一种融合局部二值模式(Local Binary Pattern,LBP)和局部稀疏表示的人脸表情特征与识别方法。为深入分析表情对人脸子区域的影响,根据五官特征对人脸进行非均匀分区,并提取局部LBP特征;为精细刻画人脸局部纹理,整合人脸局部特征,设计了人脸局部稀疏重构表示方法,并根据表情对各局部子区域的影响因子,加权融合局部重构残差进行人脸表情识别。在JAFFE2表情人脸库上的对比实验,验证了该方法的可行性和鲁棒性。    

13.  自适应加权完全局部二值模式的表情识别  被引次数:2
   胡敏  许艳侠  王晓华  黄忠  朱弘《中国图象图形学报》,2013年第18卷第10期
   为了有效地提取局部特征和全局特征以提高表情识别的性能,提出自适应加权的完全局部二值模式(Adaptively Weighted Compound Local Binary Pattern,AWCLBP)的人脸表情识别算法。首先对人脸表情图像进行预处理分离出表情子区域,与此同时生成表情子区域的贡献度图谱(Contribution Map,CM);然后对表情子区域和整幅表情图像做完全局部二值模式变换提取三种特征(差值符号特征CLBP_S、差值幅值特征CLBP_M、中心像素特征CLBP_C)并连接三种特征生成级联直方图,并根据CM对表情子区域的级联直方图进行加权和整张图像的直方图进行融合;最后用卡方距离和最近邻方法进行分类识别。本算法在JAFFE库上做了实验并和LBP、Gabor小波、活动外观模型进行了比较,验证了本算法的有效性。    

14.  基于单演主方向中心对称局部二值模式的单样本人脸识别  
   杨毅  杨恢先  唐金鑫  张书豪《电子产品世界》,2017年第24卷第9期
   本文针对单样本情况下传统人脸识别方法在姿态、表情和光照等变化下识别效果不佳的问题,提出一种基于单演主方向中心对称局部二值模式的单样本人脸识别模式的单样本人脸识别算法.首先用多尺度的单演滤波器提取人脸图像单演局部幅值和局部方向信息,并求取主方向,生成主方向模式图;然后用CS-LBP算子进行编码,得到特征;最后对不同单演尺度空间中的特征分块统计特征直方图并运用直方图相交进行分类识别.在AR、Extend Yale B人脸数据库的实验结果表明,该算法简单有效,对光照、表情、部分遮挡变化具有较好的鲁棒性.    

15.  基于低分辨率局部二值模式的人脸识别  被引次数:1
   戴金波  肖霄  赵宏伟《吉林大学学报(工学版)》,2013年第43卷第2期
   为提高人脸识别的准确度,提出了一种基于低分辨率局部二值模式的人脸识别方法。该方法将原始人脸图像滤波下采样处理成低分辨率图像,将其划分成若干块矩形块图像,对每一块图像进行局部二值模式计算,统计出每一块LBP图谱的直方图,再连接在一起成为这幅图片的最终特征向量。经实验表明,该算法在ORL和YALE上均取得了更好的识别效果,且对光照、表情、姿势等的变化具备鲁棒性。    

16.  基于局部区域LBP特征的人脸识别研究  
   王聃  李浩茹  邓春伟《黑龙江工程学院学报》,2012年第3期
   传统的LBP方法往往分散特征区域所表达的信息,提出一种基于局部区域LBP特征(Local Binary Pattern,局部二值模式)提取的人脸识别方法。用积分投影法在表情图像上定位出眉毛、眼睛、鼻子和嘴巴这些特征点的位置,根据这些特征点的位置确定这些特征部件所在子区域,然后对这些子区域进行不同的分块,提取各子区域的局部LBP直方图,按顺序把它们连结成一个特征直方图序列。实验结果表明:局部区域LBP方法与传统的LBP方法相比有很强的人脸表情特征识别能力,能够更准确地提取面部局部区域的表情信息。    

17.  局部定向模式在人脸识别中的应用  
   高现文  付炜《计算机工程与应用》,2012年第48卷第12期
   人脸识别是当今模式识别和人工智能领域的一个活跃研究方向。基于局部二值模式(LBP)算子提出局部定向模式(Local Directional Pattern,LDP)算子。对人脸图像进行分块,采用局部定向模式算子对每块图像进行特征提取并计算每块区域的特征直方图,对特征直方图采用Chi距离测度进行比较识别。实验证明,该方法在Yale人脸数据库和YaleB人脸数据库相比局部二值模式有更好的识别率,说明该方法对光照有良好的鲁棒性。    

18.  基于多尺度LBP特征的人脸描述与识别  被引次数:2
   王玮  黄非非  李见为  冯海亮《光学精密工程》,2008年第16卷第4期
   为提高人脸识别的准确性和鲁棒性,提出了一种基于多尺度LBP特征的人脸描述与识别算法。先对原始人脸图像进行二级小波分解,并采用LBP算子分别计算两幅低频逼近图像的LBP特征谱,再将LBP特征谱划分为若干个互不重叠的特征区域,并分别进行直方图统计,最后将所有区域的LBP直方图序列连接起来得到多尺度LBP特征,将其作为人脸的鉴别特征用于分类识别。所提出算法在ORL人脸数据库上取得高达99%的人脸识别率。实验分析表明,多尺度LBP特征具有较强的人脸图像描述能力和可鉴别性,且对人脸表情及位置的变化具有较高的鲁棒性。    

19.  基于改进LBP的人脸表情识别  
   姜锐  许建龙  张爱朋《浙江理工大学学报》,2013年第30卷第4期
   局部二元模式即LBP(local binary patterns),是一种有效的纹理描述算子,能够很好地提取人脸表情特征信息.针对原始LBP算子仅考虑中心像素点与邻域像素点的灰度差异的问题,对其进行了改进,提出了多重中心化二值模式MLBP(multiple local binary patterns),并将改进后的MLBP算子进行人脸表情识别,通过改进前后在JAFFE人脸库的实验比较,该方法在识别率上取得了较好的效果.    

20.  一种混合特征的人脸识别算法仿真研究  
   李扬  孙劲光《计算机仿真》,2012年第29卷第1期
   研究人脸识别优化问题,人脸图像受光照、人脸表情和位置变化等因素影响,由于图像具有复杂的多尺度特征,传统人脸识别算法只能提提取局部或全局特征,不能准确描述人脸图像,导致人脸识别率低。为了提高人脸识别率,提出一种小波分解和LBP算子相结合的人脸识别算法(WTLBP)。WTLBP首先利用小波变换对人脸图像进行分解,将人脸图像分解成大尺度和小尺度图像,然后采用LBP算子提取人脸图像的多尺度特征,最后采用概率统计法对人脸进行匹配识别。对ORL人脸库进行仿真,结果表明,WTLBP能够提取到人脸图像更加丰富的局部和全局信息,对光照、人脸表情和位置变化具有较高的鲁棒性,提高了人脸识别率。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号