首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The robust exponential stability of integral delay systems with exponential kernels is investigated. Sufficient delay-dependent robust conditions expressed in terms of linear matrix inequalities and matrix norms are derived by using the Lyapunov–Krasovskii functional approach. The results are combined with a new result on quadratic stabilisability of the state-feedback synthesis problem in order to derive a new linear matrix inequality methodology of designing a robust non-fragile controller for the finite spectrum assignment of input delay systems that guarantees simultaneously a numerically safe implementation and also the robustness to uncertainty in the system matrices and to perturbation in the feedback gain.  相似文献   

2.
In this paper we consider a special class of integral delay systems arising in several stability problems of time‐delay systems. For these integral systems we derive stability and robust stability conditions in terms of Lyapunov–Krasovskii functionals. More explicitly, after providing the stability conditions we compute quadratic functionals and apply them to derive exponential estimates for solutions, and robust stability conditions for perturbed integral delay systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Exponential stability necessary conditions for linear periodic time‐delay systems are presented. They are obtained with the help of new properties of the Lyapunov matrix in the framework of Lyapunov–Krasvoskii functionals of complete type. An academic example illustrates our results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Exponential necessary stability conditions for linear systems with multiple delays are presented. The originality of these conditions is that, in analogy with the case of delay free systems, they depend on the Lyapunov matrix function of the delay system. They are validated by examples for which the analytic characterization of the stability region is known. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
We study Lyapunov matrices for the class of integral delay systems with constant kernel and one delay. The uniqueness and computational issues of these Lyapunov matrices for exponentially stable systems are investigated.  相似文献   

6.
Jin-Hoon Kim 《Automatica》2011,(9):2118-2121
This note considers the stability of linear systems with a time-varying delay. We are interested in a simple Lyapunov–Krasovskii functional (LKF) approach without delay decomposition. In this category, all recent tractable results had a fixed bound on the allowable maximum size of the delay for years. We propose a new simple LKF including the cross terms of variables and quadratic terms multiplied by a higher degree scalar function, and present a new result expressed in the form of LMIs. We show, by two well-known examples, that our result overcomes the previous allowable maximum size of delay and it is less conservative than the previous results having a relatively small upper bound in the derivative of time-delay.  相似文献   

7.
This paper addresses exponential stability of linear networked control systems. More specifically, the paper considers a continuous‐time linear plant in feedback with a linear sampled‐data controller with an unknown time varying sampling rate, the possibility of data packet dropout, and an uncertain time varying delay. The main contribution of this paper is the derivation of new sufficient stability conditions for linear networked control systems taking into account all of these factors. The stability conditions are based on a modified Lyapunov–Krasovskii functional. The stability results are also applied to the case where limited information on the delay bounds is available. The case of linear sampled‐data systems is studied as a corollary of the networked control case. Furthermore, the paper also formulates the problem of finding a lower bound on the maximum network‐induced delay that preserves exponential stability as a convex optimization program in terms of linear matrix inequalities. This problem can be solved efficiently from both practical and theoretical points of view. Finally, as a comparison, we show that the stability conditions proposed in this paper compare favorably with the ones available in the open literature for different benchmark problems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
For a class of linear neutral-type time-delay systems (NTTDSs), this paper will present necessary exponential stability conditions by employing the Lyapunov--Krasovskii functional approach. Since these conditions are represented by the Lyapunov matrix and the neutral coefficient matrix, they not only offer a novel tool for analysing stability of linear NTTDSs by characterising instability domains, but also extend the existing results of the neutral-delay-free systems. As a medium step, the relations between the Lyapunov matrix and the fundamental matrix are characterised. The validation of the obtained results is explained by numerical examples and comparison with some existing results.  相似文献   

9.
Some recent results on exponential stability of linear continuous time difference systems with discrete and distributed delay terms are extended to the case of multiple delays. New sufficient conditions for the exponential stability and exponential estimates for the solutions by using Lyapunov–Krasovskii functionals are derived. Special attention is paid to the case of systems with commensurate discrete and distributed delays.  相似文献   

10.
In this paper the concepts of dissipativity and the exponential dissipativity are used to provide sufficient conditions for guaranteeing asymptotic stability of a time delay dynamical system. Specifically, representing a time delay dynamical system as a negative feedback interconnection of a finite‐dimensional linear dynamical system and an infinite‐dimensional time delay operator, we show that the time delay operator is dissipative with respect to a quadratic supply rate and with a storage functional involving an integral term identical to the integral term appearing in standard Lyapunov–Krasovskii functionals. Finally, using stability of feedback interconnection results for dissipative systems, we develop sufficient conditions for asymptotic stability of time delay dynamical systems. The overall approach provides a dissipativity theoretic interpretation of Lyapunov–Krasovskii functionals for asymptotically stable dynamical systems with arbitrary time delay. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
This paper is concerned with the construction of exponential estimates for a class of systems governed by continuous‐time difference equations with distributed delay. With the Lyapunov–Krasovskii approach, we propose sufficient conditions for exponential stability, with numerical constructive estimates. A conservatism analysis is made to illustrate the improvement of these stability conditions with respect to conditions already presented in the literature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a new insight into the delay‐dependent stability for time‐delay systems. Because of the key observation that the positive definiteness of a chosen Lyapunov–Krasovskii functional does not necessarily require all the involved symmetric matrices in the Lyapunov–Krasovskii functional to be positive definite, an improved delay‐dependent asymptotic stability condition is presented in terms of a set of LMIs. This fact has been overlooked in the development of previous stability results. The importance of the present method is that a vast number of existing delay‐dependent results on analysis and synthesis of time‐delay systems derived by the Lyapunov–Krasovskii stability theorem can be improved by using this observation without introducing additional variables. The reduction of conservatism of the proposed result is both theoretically and numerically demonstrated. It is believed that the proposed method provides a new direction to improve delay‐dependent results on time‐delay systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A new class of hybrid impulsive and switching models are introduced and their robust exponential stability and control synthesis are addressed. The proposed switched system is composed of stable subsystems and unstable subsystems, which not only involves state delay and norm-bounded time-varying parameter uncertainties, but also contains the impulsive switching effects between the subsystems. Based on the extension of the system dimension and the concept of average dwell time, a kind of practically useful switching rule is presented which guarantees the desired robust exponential stability. A switched state feedback controller is also given.  相似文献   

14.
A new class of hybrid impulsive and switching models are introduced and their robust exponential stability and control synthesis are addressed. The proposed switched system is composed of stable subsystems and unstable subsystems, which not only involves state delay and norm-bounded time-varying parameter uncertainties, but also contains the impulsive switching effects between the subsystems. Based on the extension of the system dimension and the concept of average dwell time, a kind of practically useful switching rule is presented which guarantees the desired robust exponential stability. A switched state feedback controller is also given.  相似文献   

15.
In the present paper, sufficient conditions for the exponential stability of linear systems with infinite distributed delays are presented. Such systems arise in population dynamics, in traffic flow models, in networked control systems, in PID controller design and in other engineering problems. In the early Lyapunov-based analysis of systems with distributed delays (Kolmanovskii & Myshkis, 1999), the delayed terms were treated as perturbations, where it was assumed that the system without the delayed term is asymptotically stable. Later, for the case of constant kernels and finite delays, less conservative conditions were derived under the assumption that the corresponding system with the zero-delay is stable (Chen & Zheng, 2007). We will generalize these results to the infinite delay case by extending the corresponding Jensen’s integral inequalities and Lyapunov–Krasovskii constructions. Our main challenge is the stability conditions for systems with gamma-distributed delays, where the delay is stabilizing, i.e. the corresponding system with the zero-delay as well as the system without the delayed term are not asymptotically stable. Here the results are derived by using augmented Lyapunov functionals. Polytopic uncertainties in the system matrices can be easily included in the analysis. Numerical examples illustrate the efficiency of the method. Thus, for the traffic flow model on the ring, where the delay is stabilizing, the resulting stability region is close to the theoretical one found in Michiels, Morarescu, and Niculescu (2009) via the frequency domain analysis.  相似文献   

16.
This paper concerns the stability problem of singular systems with time-varying delay. First, the singular system with time-varying delay is transformed into the neutral system with time-varying delay. Second, a more proper Lyapunov–Krasovskii functional (LKF) is constructed by adding some integral terms to quadratic forms. Then, to obtain less conservative conditions, the free-matrix-based integral inequality is adopted to estimate the derivative of LKF. As a result, some delay-dependent stability criteria are given in terms of linear matrix inequalities. Finally, two numerical examples are provided to demonstrate the effectiveness and superiority of the proposed method.  相似文献   

17.
In this note is proposed an analogue for linear delay systems of the characterization of asymptotic stability of the rational systems by the solvability of associated Lyapunov equation. It is shown that strong delay-independent stability of delay system is equivalent to the feasibility of certain linear matrix inequality (LMI), related to quadratic Lyapunov–Krasovskii functionals.  相似文献   

18.
This paper addresses the problem of stability for a class of switched positive linear time‐delay systems. As first attempt, the Lyapunov–Krasovskii functional is extended to the multiple co‐positive type Lyapunov–Krasovskii functional for the stability analysis of the switched positive linear systems with constant time delay. A sufficient stability criterion is proposed for the underlying system under average dwell time switching. Subsequently, the stability result for system under arbitrary switching is presented by reducing multiple co‐positive type Lyapunov–Krasovskii functional to the common co‐positive type Lyapunov–Krasovskii functional. A numerical example is given to show the potential of the proposed techniques. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
This paper is concerned with the problem of exponential stabilization for uncertain linear systems with Markovian jump parameters and mode-dependent input delays. Sufficient stabilization conditions are developed in terms of matrix inequalities, which can be solved by a proposed iterative algorithm based on the cone complementarity linearization (CCL) method. Memory controllers are also designed such that the closed-loop system is exponentially mean-square stable for all admissible uncertainties. Numerical examples are given to show that the developed method is efficient and less conservative.  相似文献   

20.
This paper is devoted to stability analysis of continuous-time delay systems based on a set of Lyapunov–Krasovskii functionals. New multiple integral inequalities are derived that involve the famous Jensen’s and Wirtinger’s inequalities, as well as the recently presented Bessel–Legendre inequalities of Seuret and Gouaisbaut (2015) and the Wirtinger-based multiple-integral inequalities of Park et al. (2015) and Lee et al. (2015). The present paper aims at showing that the proposed set of sufficient stability conditions can be arranged into a bidirectional hierarchy of LMIs establishing a rigorous theoretical basis for comparison of conservatism of the investigated methods. Numerical examples illustrate the efficiency of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号