首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In optically complex waters, it is important to evaluate the accuracy of the standard satellite chlorophyll-a (chl-a) concentration algorithms, and to develop accurate algorithms for monitoring the dynamics of chl-a concentration. In this study, the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite remote-sensing reflectance and concurrent in situ measured chl-a (2010–2013) were used to evaluate the standard OC3M algorithm (ocean chlorophyll-a three-band algorithm for MODIS) and Graver–Siegel–Maritorena model version 1 (GSM01) algorithm for estimating chl-a concentration in the Bohai and Yellow Seas (BYS). The results showed that the chl-a algorithms of OC3M and GSM01 with global default parameters presented poor performance in the BYS (the mean absolute percentage difference (MAPD) and coefficient of determination (R2) of OC3M are 222.27% and 0.25, respectively; the MAPD and R2 of GSM01 are 118.08% and 0.07, respectively). A novel statistical algorithm based on the generalized additive model (GAM) was developed, with the aim of improving the satellite-derived chl-a accuracy. The GAM algorithm was established using the in situ measured chl-a concentration as the output variable, and the MODIS above water remote-sensing reflectance (visible bands at 412, 443, 469, 488, 531, 547, 555, 645, 667, and 678 nm) and bathymetry (water depth) as input variables. The MAPD and R2 calculated between the GAM and the in situ chl-a concentration are 39.96% and 0.67, respectively. The results suggest that the GAM algorithm can yield a superior performance in deriving chl-a concentrations relative to the standard OC3M and GSM01 algorithms in the BYS.  相似文献   

2.
The utility of three different algorithms for retrieving surface chlorophyll-a values from satellite images of MODIS-Aqua is tested in the northern Alboran Sea. The available global algorithm to calculate chlorophyll-a from reflectance of MODIS-Aqua (OC3M) overestimates the surface chlorophyll-a in the study area. Another regional algorithm specifically developed for the Mediterranean Sea (MedOC3) improves the estimates although the best outcome is obtained with OC5, which was developed for Atlantic coastal waters. The three tested algorithms perform worse at in situ chlorophyll-a concentrations higher than 1 mg m?3 and exhibit uncertainty levels higher than 35% for this range of concentrations. A new algorithm (ALBOC3) is proposed which produces a good estimation of the in situ chlorophyll-a for the whole range of concentrations normally registered in the study area (0.1–3.5 mg m?3). We hypothesize that the particular bio-optical features of the northern Alboran Sea phytoplankton explain the poor functioning of the published algorithms that have been tested in this work.  相似文献   

3.
The spatial distribution of the sum of chlorophyll a and phaeophytin a concentrations (chl-a) under light wind (0–2 m s?1) conditions was studied in two lakes with an AISA airborne imaging spectrometer. Chl-a was interpreted from AISA radiance data using an algorithm based on the near-infrared (700–710 nm) to red (660–665 nm) ratio. The results of Lake Lohjanjärvi demonstrate that the use of one monitoring station can result in over- or underestimation by 29–34% of the overall chl-a compared with an AISA-based estimation. In Lake Hiidenvesi, the AISA-based estimation for the mean chl-a with 95% confidence limits was 25.19±2.18 µg l?1. The use of AISA data together with chl-a measured at 15 in situ sampling stations decreased the relative standard error of the mean chl-a estimation from 20.2% to 4.0% compared with the use of 15 discrete samples only. The relative standard error of the mean chl-a using concentrations at the three routine monitoring stations was 15.9 µg l?1 (63.1%). The minimum and maximum chl-a in Lake Hiidenvesi were 2 and 101 µg l?1, 6 and 70 µg l?1 and 11 and 66 µmg l?1, estimated using AISA data, data from 15 in situ stations and data from three routine in situ stations, respectively.  相似文献   

4.
Few studies have focused on the use of ocean colour remote sensors in the Gulf of Gabes (southeastern Tunisia). This work is the first study to evaluate the ocean colour chlorophyll-a product in this area. Chlorophyll-a concentrations were measured during oceanographic cruises performed off the Gulf of Gabes. These measurements were used to validate satellite data acquired from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite. First, two atmospheric correction procedures (standard and shortwave infrared) were tested to derive the remote-sensing reflectance, and then a comparison between two bio-optical (OC3M and MedOC3) algorithms were realized using the in situ measurements. Both atmospheric correction procedures gave similar results when applied to our study area indicating that most pixels were non-turbid. The comparison between bio-optical algorithms shows that using the regional bio-optical algorithm MedOC3 improves chlorophyll-a estimation in the Gulf of Gabes for the low values of this parameter.  相似文献   

5.
An algorithm for determining chlorophyll‐a concentrations in shallow, case II waters has been developed and applied to nearly six years of Sea‐viewing Wide Field‐of‐view Sensor (SeaWiFS) data in order to observe the general chlorophyll‐a patterns in a coastal estuarine environment. Due to the fact that the current empirical chlorophyll‐a algorithm (OC4) used to process SeaWiFS data breaks down in coastal waters, a neural network based algorithm was developed. The neural network in the study uses SeaWiFS remote sensing reflectance data paired with in situ chlorophyll‐a data in the Delaware Bay and its adjacent coastal zone (DBAC) from a number of different days and seasons in an effort to overcome the limitations of single day algorithms and simulated dataset algorithms. Although the neural network model (NN) in this study displayed some difficulty representing high chlorophyll‐a values, it showed significant improvement over the OC4 algorithm. The performance parameters of the NN were an r 2 of 0.79, a root mean square (RMS) error of 3.69?mg m?3 and a relative RMS error of 0.77. The NN was used to reprocess approximately six years of cloud free imagery of the DBAC from which the spatial and temporal variability of the chlorophyll‐a distributions in the DBAC were analysed. Time series of absolute chlorophyll‐a values for five stations along the central axis of the Delaware Bay were analysed using Fourier analysis techniques, from which chlorophyll‐a patterns were found to have a quasi‐annual period. Furthermore, the spatial distributions of the chlorophyll‐a patterns were analysed using a general climatology and monthly climatologies of normalized chlorophyll‐a values. The climatologies generally agreed with spatial distributions determined from historic ship‐based data. The study found that summer blooms in the mid‐estuary of the Delaware Bay may be more important than previously observed. This suggests that more frequent and synoptic measurements via satellite can reveal important new information about even well studied regions.  相似文献   

6.
In this paper, uncertainties in the retrieval of satellite surface chlorophyll concentrations in the Mediterranean Sea have been evaluated using both regional and global ocean colour algorithms. The rationale for this effort was to define the most suitable ocean colour algorithm for the reprocessing of the entire SeaWiFS archive over the Mediterranean region where standard algorithms were demonstrated to be inappropriate. Using a large dataset of coincident in situ chlorophyll and optical measurements, covering most of the trophic regimes of the basin, we validated two existing regional algorithms [Bricaud, A., E. Bosc, and D. Antoine, 2002. Algal biomass and sea surface temperature in the Mediterranean Basin — Intercomparison of data from various satellite sensors, and implications for primary production estimates. Remote Sensing of Environment, 81(2-3), 163-178.; D'Ortenzio, F., S. Marullo, M. Ragni, M. R. d'Alcala and R. Santoleri, 2002. Validation of empirical SeaWiFS algorithms for chlorophyll-alpha retrieval in the Mediterranean Sea — A case study for oligotrophic seas. Remote Sensing of Environment, 82(1), 79-94.] and the global algorithm OC4v4 used for standard NASA SeaWiFS products. The results of our analysis confirmed that the OC4v4 performs worse than the two existing regional algorithms. Nonetheless, these two regional algorithms do show uncertainties dependent on chlorophyll values. Then, we introduced a better tuned algorithm, the MedOC4. Using an independent set of in situ chlorophyll data, we quantified the uncertainties in SeaWiFS chlorophyll estimates using the existing and new regional algorithms. The results confirmed that MedOC4 is the best algorithm matching the requirement of unbiased satellite chlorophyll estimates and improving the percentage of the satellite uncertainty, and that the NASA standard chlorophyll products are affected by an uncertainty of the order of 100%. Moreover, the analysis suggests that the poor quality of the SeaWiFS chlorophyll in the Mediterranean is not due to the atmospheric correction term but to peculiarities in the optical properties of the water column. Finally the observed discrepancy between the global and the regional bio-optical algorithms has been discussed analysing the differences between the two in situ datasets used for tuning the algorithms (SeaBASS versus ours). The main results are that methodological differences in the two datasets cannot play a major role and the inherent bio-optical properties of the basin can explain the observed discrepancy. In particular the oligotrophic water of the Mediterranean Sea is less blue (30%) and greener (15%) than the global ocean.  相似文献   

7.
Three ocean colour algorithms, OC4v6, Carder and OC5 were tested for retrieving Chlorophyll-a (Chla) in coastal areas of the Bay of Bengal and open ocean areas of the Arabian Sea. Firstly, the algorithms were run using ~ 80 in situ Remote Sensing Reflectance, (Rrs(λ)) data collected from coastal areas during eight cruises from January 2000 to March 2002 and the output was compared to in situ Chla. Secondly, the algorithms were run with ~ 20 SeaWiFS Rrs(λ) and the results were compared with coincident in situ Chla. In both cases, OC5 exhibited the lowest log10-RMS, bias, had a slope close to 1 and this algorithm appears to be the most accurate for both coastal and open ocean areas. Thirdly the error in the algorithms was regressed against Total Suspended Material (TSM) and Coloured Dissolved Organic Material (CDOM) data to assess the co-variance with these parameters. The OC5 error did not co-vary with TSM and CDOM. OC4v6 tended to over-estimate Chla > 2 mg m−3 and the error in OC4v6 co-varied with TSM. OC4v6 was more accurate than the Carder algorithm, which over-estimated Chla at concentrations > 1 mg m−3 and under-estimated Chla at values < 0.5 mg m−3. The error in Carder Chla also co-varied with TSM. The algorithms were inter-compared using > 5500 SeaWiFS Rrs(λ) data from coastal to offshore transects in the Northern Bay of Bengal. There was good agreement between OC4v6 and OC5 in open ocean waters and in coastal areas up to 2 mg m−3. There was a strong divergence between Carder and OC5 in open ocean and coastal waters. OC4v6 and Carder tended to over-estimate Chla in coastal areas by a factor of 2 to 3 when TSM > 25 g m−3. We strongly recommend the use of OC5 for coastal and open ocean waters of the Bay of Bengal and Arabian Sea. A Chla time series was generated using OC5 from 2000 to 2003, which showed that concentrations at the mouths of the Ganges reach a maxima (~ 5 mg m−3) in October and November and were 0.08 mg m−3 further offshore increasing to 0.2 mg m−3 during December. Similarly in early spring from February to March, Chla was 0.08 to 0.2 mg m−3 on the east coast of the Bay.  相似文献   

8.
This study examined satellite chlorophyll-a (chl-a) concentration and in situ observations in Sanya Bay (SYB). In situ observation of chl-a was conducted four times per year at 12 sampling stations in SYB from January 2004 to October 2008. Monthly satellite chl-a was derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) during 2000–2012. This study compared satellite chl-a values to in situ measurements in SYB. The two data sets match well in the whole region except for two estuaries. Results show that the average in situ chl-a was 1.49 mg m?3 in SYB. Chl-a was relatively higher (>2 mg m?3) and more variable in coastal areas, with a tendency to decrease offshore (<0.4 mg m?3). The chl-a level in summer displayed obviously vertical stratification, with higher values at the bottom and lower values at the surface. Analysis of monthly mean chl-a showed that the highest level (>2 mg m?3) appeared in December, with the lowest in March (<1 mg m?3). The gradients are ranked winter, autumn, summer and spring. There was higher chl-a in autumn and winter, which may be associated with the stronger wind monsoon then. Annual mean chl-a from 2000 to 2012 varied from 1.17 to 2.05 mg m?3, with the minimum in 2001 and the maximum in 2005. The chl-a level presented a roughly increasing tendency from 2000 to 2012, which may be related to the increasing nutrients associated with the development of tourism and fishery.  相似文献   

9.
This study presents an analysis of temporal behaviour of in situ and satellite-derived soil moisture data. The main objective is to evaluate the temporal reliability of the satellite products, comparing them with in situ data, for applications that would benefit from the use of consistent time series of soil moisture, such as studies on climate and hydrological cycle. The time series, seasonalities, and anomalies of Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) soil moisture and European Remote Sensing (ERS) satellite soil wetness index data sets were analysed over five test sites. The agreement of temporal behaviours and autocorrelation functions and the correlation with in situ data were investigated. A good agreement between the seasonalities of both satellite data sets and in situ data with high correlations (i.e. 0.9) was found over the sites with a large soil moisture variability range and short vegetation cover. Noisier seasonalities were found over sites with small soil moisture variability ranges, affected by radiofrequency interference (RFI) and characterized by croplands. In spite of ERS soil moisture being characterized by a longer time series, the seasonality is much noisier than the AMSR-E products due to the numerous gaps in the data set. The correlation among the anomalies is lower than 0.6, mainly due to the noise in the satellite products. However, the autocorrelation functions show that the anomalies are not random, although noisy. Although the stability of the anomaly correlograms is affected by the relatively short time series available for this study, the analysis shows that there are statistical similarities between the satellite soil moisture anomalies and the in situ data anomalies. The results show that AMSR-E and ERS products are consistent over long time periods and do contain useful information about soil moisture seasonality and anomaly behaviour, although they are affected by noise.  相似文献   

10.
National and regional obligations to control and maintain water quality have led to an increase in coastal and estuarine monitoring. A potentially valuable tool is high temporal and spatial resolution satellite ocean colour data. NASA's MODIS-Terra and -Aqua can capture data at both 250 m and 500 m spatial resolutions and the existence of two sensors provides the possibility for multiple daily passes over a scene. However, no robust atmospheric correction method currently exists for these data, rendering them unusable for quantitative monitoring applications. Therefore, this paper presents an automatic and dynamic atmospheric correction approach allowing the determination of ocean colour. The algorithm is based around the standard MODIS 1 km atmospheric correction, includes cloud masking and is applicable to all of the visible 500 m bands. Comparison of the 500 m ocean colour data with the standard 1 km data shows good agreement and these results are further supported by in situ data comparisons. In addition, a novel method to produce 500 m chlorophyll-a estimates is presented. Comparisons of the 500 m estimates with the standard MODIS OC3M algorithm and to in situ data from a near-coast validation site are given.  相似文献   

11.
Restoration of the ecosystem services and functions of lakes requires an understanding of the turbidity dynamics in order to arrive at informed environmental management decisions. The understanding of the spatio-temporal dynamics of turbidity requires frequent monitoring of the turbidity components such as chlorophyll-a concentration. In this study, we explored the use of Moderate Resolution Imaging Spectroradiometer Aqua (MODIS-Aqua) satellite data in studying the spatio-temporal changes in chlorophyll-a concentration in Lake Naivasha, a turbid tropical system. The temporal trend of chlorophyll-a concentration over the study period in the lake was also evaluated. The temporal trend assessment was achieved through the removal of periodic seasonal interference using Seasonal-Trend decomposition based on the LOESS (Local Regression) procedure. The resultant chlorophyll-a concentration maps derived from MODIS-Aqua satellite data give an indication of the monthly spatial variation in chlorophyll-a concentration from 2002 to 2012. The results of regression analyses between satellite-derived chlorophyll-a and in situ measurements reveal a high level of precision, but with a measureable bias with the satellite underestimating actual in situ measurements (R2 = 0.65, P < 0.001). Although the actual values of the chlorophyll-a concentrations are underestimated, the significant relationship between satellite-derived chlorophyll-a and in situ measurements provides reliable information for studying spatial variations and temporal trends. In 2009 and 2010, it was difficult to detect chlorophyll-a from the MODIS-Aqua imagery, and this coincided with a period of the lowest water levels in Lake Naivasha. An inverse relationship between de-seasoned water level and chlorophyll-a concentration was evident. This study shows that MODIS-Aqua satellite data provide useful information on the spatio-temporal variations in Lake Naivasha, which is useful in establishing general trends that are more difficult to determine through routine ground measurements.  相似文献   

12.
For the year 1999 all Sea viewing Wide Field of view Sensor (SeaWiFS) scenes of the Danish waters from the North Sea to the Baltic Sea were browsed, and a total of 47 SeaWiFS scenes with reasonably low cloud cover and, therefore, potential in situ match-ups were found and processed. The in situ data used as match-ups were collected on routine monitoring cruises by Danish and Swedish environmental authorities. A few stations in the North Sea, Skagerak and the western Baltic Sea were sampled, while most stations were located in Kattegat and the inner Danish waters. A turbid water SeaWiFS atmospheric correction algorithm was applied, since the standard SeaWiFS algorithm for chlorophyll-a (CHL) has been shown to be fairly inaccurate in turbid coastal waters. This is due to both inaccurate atmospheric and to relatively high and variable abundance of yellow substance. The application of the turbid atmospheric correction substantially improved the SeaWiFS CHL estimates. Regressions between SeaWiFS estimates using the OC2 and OC4 algorithms used in the SeaDAS software (versions 3.3 and 4.0, respectively) and in situ CHL values were made as well, and regression with a number of other possible reflectance ratios with SeaWiFS channels. The best correlation was found to be R2=0.54 using a double-ratio algorithm using both R510/R555 and R443/R670, while the OC4v4 had the second best correlation of R2=0.39. Among other single ratios, the R510/R555 had the highest correlation with CHL, which was expected since this is also the ratio that OC4v4 most often switches to in the waters investigated here. The range of CHL concentrations in this study was rather limited (all but three points from 0.5–3?mg?m?3) so there is a need for inclusion of more data to expand the concentration range. This should be possible using also data from 2000, 2001 and onwards and, hereafter, a more ‘stable’ empirical algorithm can be derived for the Danish waters.  相似文献   

13.
Over the last 15 years, great effort has gone into the development of chlorophyll-a (chl-a) retrieval algorithms for case 2 waters, where variations in the water leaving radiance signal are not well correlated with concentrations of chl-a. In this study, we investigate the effectiveness of Moderate Resolution Imaging Spectroradiometer (MODIS)-derived chl-a retrieval algorithms in the less productive coastal waters around Tasmania, Australia. Algorithms were evaluated using matches between satellite imagery and in-situ water samples (number of samples, n = 16–65) derived from a 604 sample data set collected over a 9-year period. Three aerosol correction models and three chl-a retrieval algorithms were evaluated using both standard and high-resolution processing procedures using the National Aeronatics and Space Adminstration’s SeaDAS software package. chl-a retrievals were evaluated in Bass Strait, where in-situ chl-a was less than 1 mg m?3 and retrievals were less affected by coloured dissolved organic matter. chlor_a, the default SeaDAS chl-a product, with the Management unit of the North Sea Mathematical models aerosol correction algorithm performed best (root mean square error (RMSE) = 0.09 mg m?3; mean absolute percentage error (MAPE) = 34%; coefficient of determination, R2 = 0.75). The fluorescence line height algorithm using Rayleigh corrected top of atmosphere reflectances (RMSE = 0.11 mg m?3, MAPE = 41%, R2 = 0.61) may provide an alternative in waters where full atmospheric correction is problematic and the two-band red/near-infrared algorithm failed to provide a meaningful estimate of chl-a. High-resolution processing of MODIS imagery improved spatial resolution but reduced chl-a retrieval accuracy, reducing the agreement between measured and predicted levels by between 12% and 25% depending on the retrieval algorithm. The SeaDAS default chlor_a product proved superior to the alternatives in mid-latitude mesotrophic coastal waters with low chl-a concentrations. In addition, there appears little benefit in using MODIS high-resolution processing mode for chl-a retrievals.  相似文献   

14.
Different scales of hydrological and biological patterns of the Bay of Biscay are assessed using space‐borne and airborne optical remote sensing data, field measurements and a 3‐dimensional biophysical model. If field measurements provide accurate values on the vertical dimension, ocean colour data offer frequent observations of surface biological patterns at various scales of major importance for the validation of ecosystem modelling. Although the hydro‐biological model of the continental margin reproduces the main seasonal variability of surface biomass, the optical remote sensing data have helped to identify low grid resolution, input inaccuracies and neglect of swell‐induced erosion mechanism as model limitations in shallow waters. Airborne remote sensing is used to show that satellite data and field measurements are unsuitable for comparison in the extreme case of phytoplankton blooms in patches of a few hundred metres. Vertically, the satellite observation is consistent with near surface in situ measurements as the sub‐surface chlorophyll maximum usually encountered in summer is not detected by optical remote sensing. A mean error (δC/C) of 50.5% of the chlorophyll‐a estimate in turbid waters using the SeaWiFS‐OC5 algorithm allows the quantitative use of ocean colour data by the coastal oceanographic community.  相似文献   

15.
High concentrations of chlorophyll-a (chl-a) during summer are by definition a common problem in eutrophicated lakes. Several models have been designed to predict chl-a concentrations but are unable to estimate the probability of predicted concentrations or concentration spans during subsequent months. Two different methods were developed to compute the probabilities of obtaining a certain chl-a concentration. One method is built on discrete Markov chains and the other method on a direct relationship between median chl-a concentrations from two months. Lake managers may use these methods to detect and counteract the risk of high chl-a concentrations and algal blooms during coming months. Both methods were evaluated and applied along different scenarios to detect the probability to exceed chl-a concentration in different coming months. The procedure of computing probabilities is strictly based on general statistics which means that neither method is constrained for chl-a but can also be used for other variables. A user-friendly software application was developed to facilitate and extend the use of these two methods.  相似文献   

16.
In this paper, change in grassland cover near Lake Qinghai, west China was quantitatively detected from satellite remote-sensing data. Two Thematic Mapper images recorded in 1987 and 2000 were radiometrically corrected and used to derive the Normalized Difference Vegetation Index (NDVI). The NDVI image in 2000, after standardization via in situ measured spectra, was converted to a map of grass cover with the aid of in situ grass-cover samples. Another map was produced from the 1987 image after it was radiometrically benchmarked to the 2000 image using the calibration to like-values method. Comparison of these two maps revealed that a total of 36.28 km2 of grassland had a higher cover, versus 44.72 km2 that experienced grassland degradation in the study area. The absolute cover changed by a net value of??1.27%. The magnitude of change is related inversely to the value of the cover. The large majority of the area (82.6%), however, had a small change that was within ±20%. With this proposed method, it is possible to quantify changes in grassland cover from multi-temporal satellite data if one set of ground samples are concurrently collected with one of the satellite images.  相似文献   

17.
Much effort has been made in recent years to improve the spectral and spatial resolution of satellite sensors to develop improved vegetation indices reflecting surface conditions. In this study satellite vegetation indices from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Very High Resolution Radiometer (AVHRR) are evaluated against two years of in situ measurements of vegetation indices in Senegal. The in situ measurements are obtained using four masts equipped with self‐registrating multispectral radiometers designed for the same wavelengths as the satellite sensor channels. In situ measurements of the MODIS Normalized Difference Vegetation Index (NDVI) and AVHRR NDVI are equally sensitive to vegetation; however, the MODIS NDVI is consistently higher than the AVHRR NDVI. The MODIS Enhanced Vegetation Index (EVI) proved more sensitive to dense vegetation than both AVHRR NDVI and MODIS NDVI. EVI and NDVI based on the MODIS 16‐day constrained view angle maximum value composite (CV‐MVC) product captured the seasonal dynamics of the field observations satisfactorily but a standard 16‐day MVC product estimated from the daily MODIS surface reflectance data without view angle constraints yielded higher correlations between the satellite indices and field measurements (R 2 values ranging from 0.74 to 0.98). The standard MVC regressions furthermore approach a 1?:?1 line with in situ measured values compared to the CV‐MVC regressions. The 16‐day MVC AVHRR data did not satisfactorily reflect the variation in the in situ data. Seasonal variation in the in situ measurements is captured reasonably with R 2 values of 0.75 in 2001 and 0.64 in 2002, but the dynamic range of the AVHRR satellite data is very low—about a third to a half of the values from in situ measurements. Consequently the in situ vegetation indices were emulated much better by the MODIS indices than by the AVHRR NDVI.  相似文献   

18.
Changes in chlorophyll concentration distribution in surface waters of the northeastern Gulf of Mexico (NEGOM) were examined using satellite and in situ data collected between November 1997 and August 2000. The patterns of chlorophyll distribution derived from in situ data consistently matched the satellite observations, even though the satellite-derived concentrations in coastal and offshore waters influenced by rivers were overestimated by the standard satellite data processing algorithms. River discharge and wind-driven upwelling were the major factors influencing surface chlorophyll-a variability for inshore regions. High in situ chlorophyll-a concentrations (≥1 mg m?3) occurred inshore and particularly near major river mouths during the summer seasons of 1998, 1999 and 2000. Plumes of Mississippi River water extended offshore to the southeast of the delta over distances >500 km from the river delta for maximum periods of 14 weeks between May and September every year and could reach the Florida Keys in certain years. The offshore transport of the plume was initiated by eastward or southeastward winds and then by separate anticyclonic eddies located southeast of the Mississippi delta and nearby shelf every year. Chlorophyll concentrations during the winter to spring transition in 1998 off Escambia, Choctawhatchee, Apalachicola and Suwannee Rivers and off Tampa Bay were up to 4 times higher than during the same periods in 1999 and 2000. This was related to higher freshwater discharge during the 1997–1998 winter–spring transition, coinciding with an El Niño–Southern Oscillation event, and to the unusually strong upwelling observed along the coast in spring 1998.  相似文献   

19.
The measurements of in situ samplers, the ENEA Light Detection and Ranging (Lidar) Fluorosensor (ELF) and Moderate Resolution Imaging Spectroradiometer on‐board the Terra satellite (MODIS‐Terra), carried out in the Southern Ocean during the Austral summer 2002–2003, were used to provide the first algorithm for chlorophyll‐a (Chl‐a) retrieval from MODIS‐Terra imagery of Sun‐induced fluorescence in the Southern Ocean. The results of the algorithm indicate that the standard MODIS‐Terra algorithm underestimated Chl‐a. The discrepancy (20%) is below the expected error of MODIS (35%).  相似文献   

20.
ABSTRACT

The United States Harmful Algal Bloom and Hypoxia Research Control Act of 2014 identified the need for forecasting and monitoring harmful algal blooms (HAB) in lakes, reservoirs, and estuaries across the nation. Temperature is a driver in HAB forecasting models that affects both HAB growth rates and toxin production. Therefore, temperature data derived from the U.S. Geological Survey Landsat 5 Thematic Mapper and Landsat 7 Enhanced Thematic Mapper Plus thermal band products were validated across 35 lakes and reservoirs, and 24 estuaries. In situ data from the Water Quality Portal (WQP) were used for validation. The WQP serves data collected by state, federal, and tribal groups. Discrete in situ temperature data included measurements at 11,910 U.S. lakes and reservoirs from 1980 through 2015. Landsat temperature measurements could include 170,240 lakes and reservoirs once an operational product is achieved. The Landsat-derived temperature mean absolute error was 1.34°C in lake pixels >180 m from land, 4.89°C at the land-water boundary, and 1.11°C in estuaries based on comparison against discrete surface in situ measurements. This is the first study to quantify Landsat resolvable U.S. lakes and reservoirs, and large-scale validation of an operational satellite provisional temperature climate data record algorithm. Due to the high performance of open water pixels, Landsat satellite data may supplement traditional in situ sampling by providing data for most U.S. lakes, reservoirs, and estuaries over consistent seasonal intervals (even with cloud cover) for an extended period of record of more than 35 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号