首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
An adaptive output feedback neural network tracking controller is designed for a class of unknown output feedback nonlinear time-delay systems by using backstepping technique.Neural networks are used to approximate unknown time-delay functions.Delay-dependent filters are intro- duced for state estimation.The domination method is used to deal with the smooth time-delay basis functions.The adaptive bounding technique is employed to estimate the upper bound of the neural network reconstruction error.Based on Lyapunov-Krasoviskii functional,the semi-global uniform ultimate boundedness(SGUUB)of all the signals in the closed-loop system is proved.The arbitrary output tracking accuracy is achieved by tuning the design parameters and the neural node number. The feasibility is investigated by an illustrative simulation example.  相似文献   

2.
This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backstepping technique. NNs are used to approximate unknown functions dependent on time delay, Delay-dependent filters are introduced for state estimation. The domination method is used to deal with the smooth time-delay basis functions. The adaptive bounding technique is employed to estimate the upper bound of the NN approximation errors. Based on Lyapunov- Krasovskii functional, the semi-global uniform ultimate boundedness of all the signals in the closed-loop system is proved, The feasibility is investigated by two illustrative simulation examples.  相似文献   

3.
基于神经网络补偿的非线性时滞系统时滞正反馈控制   总被引:4,自引:0,他引:4  
那靖  任雪梅  黄鸿 《自动化学报》2008,34(9):1196-1202
A new adaptive time-delay positive feedback controller (ATPFC) is presented for a class of nonlinear time-delay systems. The proposed control scheme consists of a neural networks-based identification and a time-delay positive feedback controller. Two high-order neural networks (HONN) incorporated with a special dynamic identification model are employed to identify the nonlinear system. Based on the identified model, local linearization compensation is used to deal with the unknown nonlinearity of the system. A time-delay-free inverse model of the linearized system and a desired reference model are utilized to constitute the feedback controller, which can lead the system output to track the trajectory of a reference model. Rigorous stability analysis for both the identification and the tracking error of the closed-loop control system is provided by means of Lyapunov stability criterion. Simulation results are included to demonstrate the effectiveness of the proposed scheme.  相似文献   

4.
In this paper, the problem of output tracking for a class of uncertain nonlinear systems is considered. First, neural networks are employed to cope with uncertain nonlinear functions, based on which state estimation is constructed. Then, an output feedback control system is designed by using dynamic surface control (DSC). To guarantee the L-infinity tracking performance, an initialization technique is presented. The main feature of the scheme is that explosion of complex- ity problem in backstepping control is avoided, and there is no need to update the unknown parameters including control gains as well as neural networks weights, the adaptive law with one update parameter is necessary only at the first design step. It is proved that all signals of the closed-loop system are semiglobally uniformly ultimately bounded and the L-infinity performance of system tracking error can be guaranteed. Simulation results demonstrate the effectiveness of the proposed scheme.  相似文献   

5.
A novel adaptive neural network (NN) output-feedback regulation algorithm for a class of nonlinear time-varying timedelay systems is proposed. Both the designed observer and controller are independent of time delay. Different from the existing results, where the upper bounding functions of time-delay terms are assumed to be known, we only use an NN to compensate for all unknown upper bounding functions without that assumption. The proposed design method is proved to be able to guarantee semi-global uniform ultimate boundedness of all the signals in the closed system, and the system output is proved to converge to a small neighborhood of the origin. The simulation results verify the effectiveness of the control scheme.  相似文献   

6.
This paper addresses a neural adaptive backstepping control with dynamic surface control technique for a class of semistrict feedback nonlinear systems with bounded external disturbances.Neural networks (NNs) are introduced as approximators for uncertain nonlinearities and the dynamic surface control (DSC) technique is involved to solve the so-called "explosion of terms" problem.In addition,the NN is used to approximate the transformed unknown functions but not the original nonlinear functions to overcome the possible singularity problem.The stability of closed-loop system is proven by using Lyapunov function method,and adaptation laws of NN weights are derived from the stability analysis.Finally,a numeric simulation validates the results of theoretical analysis.  相似文献   

7.
This paper addresses the adaptive tracking control scheme for switched nonlinear systems with unknown control gain sign. The approach relaxes the hypothesis that the upper bound of function control gain is known constant and the bounds of external disturbance and approximation errors of neural networks are known. RBF neural networks (NNs) are used to approximate unknown functions and an H-infinity controller is introduced to enhance robustness. The adaptive updating laws and the admissible switching signals have been derived from switched multiple Lyapunov function method. It’s proved that the resulting closed loop system is asymptotically Lyapunov stable such that the output tracking error performance and H-infinity disturbance attenuation level are well obtained. Finally, a simulation example of Forced Duffing systems is given to illustrate the effectiveness of the proposed control scheme and improve significantly the transient performance.  相似文献   

8.
A robust adaptive controller for a nonholonomic mobile robot with unknown kinematic and dynamic parameters is proposed. A kinematic controller whose output is the input of the relevant dynamic controller is provided by using the concept of backstepping. An adaptive algorithm is developed in the kinematic controller to approximate the unknown kinematic parameters, and a simple single-layer neural network is used to express the highly nonlinear robot dynamics in terms of the known and unknown parameters. In order to attenuate the effects of the uncertainties and disturbances on tracking performance, a sliding mode control term is added to the dynamic controller. In the deterministic design of feedback controllers for the uncertain dynamic systems, upper bounds on the norm of the uncertainties are an important clue to guarantee the stability of the closed-loop system. However, sometimes these upper bounds may not be easily obtained because of the complexity of the structure of the uncertainties. Thereby, simple adaptation laws are proposed to approximate upper bounds on the norm of the uncertainties to address this problem. The stability of the proposed control system is shown through the Lyapunov method. Lastly, a design example for a mobile robot with two actuated wheels is provided and the feasibility of the controller is demonstrated by numerical simulations.  相似文献   

9.
This paper discusses the problem of global state regulation via output feedback for a class of feedforward nonlinear time-delay systems with unknown measurement sensitivity. Different from previous works, the nonlinear terms are dominated by upper triangular linear unmeasured (delayed) states multiplied by unknown growth rate. The unknown growth rate is composed of an unknown constant, a power function of output, and an input function. Furthermore, due to the measurement uncertainty of the system output, it is more difficult to solve this problem. It is proved that the presented output feedback controller can globally regulate all states of the nonlinear systems using the dynamic gain scaling technique and choosing the appropriate Lyapunov–Krasovskii functionals.  相似文献   

10.
A robust neuro-adaptive controller for uncertain flexible joint robots is presented. This control scheme integrates H-infinity disturbance attenuation design and recurrent neural network adaptive control technique into the dynamic surface control framework. Two recurrent neural networks are used to adaptively learn the uncertain functions in a flexible joint robot. Then, the effects of approximation error and filter error on the tracking performance are attenuated to a prescribed level by the embedded H-infinity controller, so that the desired H-infinity tracking performance can be achieved. Finally, simulation results verify the effectiveness of the proposed control scheme.  相似文献   

11.
非线性时滞大系统自适应神经网络分散控制   总被引:4,自引:3,他引:4  
针对一类未知非线性时滞关联大系统,提出一种自适应神经网络分散跟踪控制方案.采用神经网络逼近各子系统内部的非线性函数和关联项中的时滞非线性函数;利用占有方法处理时滞项,采用Backstepping技术设计分散控制律和参数自适应律.基于Lyapunov-Krasoviskii泛函证明了闭环大系统所有信号半全局一致最终有界.通过调节设计参数和增加神经元个数,可以实现任意输出跟踪精度.实例仿真说明了该方案的可行性。  相似文献   

12.
司文杰  王聪  董训德  曾玮 《控制与决策》2017,32(8):1377-1385
针对一类具有未知控制方向的随机时滞系统设计自适应神经输出反馈控制器.首先,利用状态观测器估计不可测量的系统状态;其次,选择合适的Lyapunov-Krasovskii函数消除未知延迟项对系统的影响,利用Nussbaum-type函数处理系统的未知控制方向问题,通过神经网络逼近未知的非线性函数,以及用动态表面控制(DSC)解决控制器设计中出现的复杂性问题;最后,通过Lyapunov稳定性理论,构造一个鲁棒自适应神经网络输出反馈控制器,可以保证闭环系统中所有信号在二阶或四阶矩意义下一致最终有界,跟踪误差能收敛到零值小的领域内.仿真实例验证了所提出方法的有效性.  相似文献   

13.
Layered neural networks are used in a nonlinear self-tuning adaptive control problem. The plant is an unknown feedback-linearizable discrete-time system, represented by an input-output model. To derive the linearizing-stabilizing feedback control, a (possibly nonminimal) state-space model of the plant is obtained. This model is used to define the zero dynamics, which are assumed to be stable, i.e., the system is assumed to be minimum phase. A linearizing feedback control is derived in terms of some unknown nonlinear functions. A layered neural network is used to model the unknown system and generate the feedback control. Based on the error between the plant output and the model output, the weights of the neural network are updated. A local convergence result is given. The result says that, for any bounded initial conditions of the plant, if the neural network model contains enough number of nonlinear hidden neurons and if the initial guess of the network weights is sufficiently close to the correct weights, then the tracking error between the plant output and the reference command will converge to a bounded ball, whose size is determined by a dead-zone nonlinearity. Computer simulations verify the theoretical result  相似文献   

14.
In this paper, an adaptive neural output feedback control scheme based on backstepping technique and dynamic surface control (DSC) approach is developed to solve the tracking control problem for a class of nonlinear systems with unmeasurable states. Firstly, a nonlinear state observer is designed to estimate the unmeasurable states. Secondly, in the controller design process, radial basis function neural networks (RBFNNs) are utilised to approximate the unknown nonlinear functions, and then a novel adaptive neural output feedback tracking control scheme is developed via backstepping technique and DSC approach. It is shown that the proposed controller ensures that all signals of the closed-loop system remain bounded and the tracking error converges to a small neighbourhood around the origin. Finally, two numerical examples and one realistic example are given to illustrate the effectiveness of the proposed design approach.  相似文献   

15.
An approximation based adaptive neural decentralized output tracking control scheme for a class of large-scale unknown nonlinear systems with strict-feedback interconnected subsystems with unknown nonlinear interconnections is developed in this paper. Within this scheme, radial basis function RBF neural networks are used to approximate the unknown nonlinear functions of the subsystems. An adaptive neural controller is designed based on the recursive backstepping procedure and the minimal learning parameter technique. The proposed decentralized control scheme has the following features. First, the controller singularity problem in some of the existing adaptive control schemes with feedback linearization is avoided. Second, the numbers of adaptive parameters required for each subsystem are not more than the order of this subsystem. Lyapunov stability method is used to prove that the proposed adaptive neural control scheme guarantees that all signals in the closed-loop system are uniformly ultimately bounded, while tracking errors converge to a small neighborhood of the origin. The simulation example of a two-spring interconnected inverted pendulum is presented to verify the effectiveness of the proposed scheme.  相似文献   

16.
针对三自由度全驱动船舶速度向量不可测问题,考虑船舶模型参数和外部环境扰动均未知的情况,提出一种基于神经网络观测器的船舶轨迹跟踪递归滑模动态面输出反馈控制方法.该方法设计神经网络自适应观测器估计船舶速度向量,且利用神经网络逼近模型参数不确定项,综合考虑船舶位置和速度误差之间关系构造递归滑模面,再采用动态面控制技术设计轨迹跟踪控制律和参数自适应律,并引入低频增益学习方法消除外界扰动导致的高频振荡控制信号.选取李雅普诺夫函数证明了该控制律能够保证轨迹跟踪闭环系统内所有信号的一致最终有界性.最后,基于一艘供给船进行仿真验证,结果表明,船舶轨迹跟踪响应速度快,所设计控制器对系统模型参数摄动及外界扰动具有较强的鲁棒性.  相似文献   

17.
针对自适应神经网络跟踪控制问题,提出一种确定逼近域的方法.采用参考信号取代未知非线性函数中的系统输出,神经网络用于逼近以参考信号为输入的未知不确定项.可以利用参考信号的界预先确定神经网络逼近域,再采用自适应鲁棒方法处理由于函数输入置换所引起的另一类不确定项.所得到的闭环系统是全局稳定的.仿真实例说明了该控制方法的有效性.  相似文献   

18.
This paper studies the output feedback tracking control problem for a class of strict‐feedback uncertain nonlinear systems with full state constraints and unmodeled dynamics using a prescribed performance adaptive neural dynamic surface control design approach. A nonlinear mapping technique is employed to address the state constraints. Radial basis function neural networks are utilized to approximate the unknown nonlinear functions. The unmodeled dynamics is addressed by introducing an available dynamic signal. Subsequently, we construct the controller and parameter adaptive laws using a backstepping technique. Based on Lyapunov stability theory, it is shown that all signals in the closed‐loop system are semiglobally uniformly ultimately bounded and that the tracking error always remains within the prescribed performance bound. Simulation results are presented to demonstrate the effectiveness of the proposed control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号