首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
This paper explores the use of Moderate Resolution Imaging Spectroradiometer (MODIS) wavebands in the red/near-infra-red for estimating concentrations of suspended particulate matter (SPM) in the moderately turbid, optically complex waters of Lake Erie. Observations show that at wavelengths shorter than 550 nm, more than 50% of the absorption signal is accounted for by dissolved organic matter and phytoplankton, confirming that algorithms incorporating these wavelengths may not be appropriate for these waters. Single band and band ratios at wavelengths greater than 667 nm are tested for their suitability for monitoring SPM concentrations in these waters. A simplified regional semi-analytical model is utilized which is independent of variations in dissolved organic matter and chlorophyll absorption, enabling estimates of SPM concentrations from MODIS water-leaving radiance at 748 nm with an average root mean square (RMS) error of 40%. Knowledge of the vertical distribution of particles enables estimates of total water column suspended loads which are then related to wind re-suspension events. The method is applied to MODIS water-leaving radiance at 748 nm to produce a time series of surface and total water column suspended loads in Lake Erie for the period 2003–2007.  相似文献   

2.
Satellite study of oceanic eddy formation, propagation, interactions, and fate was first conducted by sea surface temperature derived at infrared wavelengths. For visible wavelength ocean color reflectances, it is shown that recent radiative transfer model inversions provide additional characteristics of eddies: their constituent absorption and backscattering inherent optical properties. The chromophoric dissolved organic matter absorption coefficient has the highest contrast and is therefore the most visually evident inherent optical property (while the phytoplankton absorption coefficient and backscattering coefficients are respectively less discernible). For use as an analytical tool, comparisons suggests that the chromophoric dissolved organic matter absorption coefficient has a ∼10× higher contrast (i.e., ∼5% vs. 50%) in the Middle Atlantic Bight making eddy events detectable over longer time periods than with SST imagery. Example imagery illustrates the application of chromophoric dissolved organic matter and phytoplankton absorption coefficient inherent optical properties to the visual injection of dissolved and particulate organic carbon into the deep ocean by a Gulf Stream ring.  相似文献   

3.
Algorithms that have been used on a routine basis for remote sensing of the phytoplankton pigment, chlorophyll- a, from ocean colour data from satellite sensors such as the CZCS (Coastal Zone Color Scanner), SeaWiFS (Sea Viewing Wide Field-of-View Sensor) and OCTS (Ocean Colour and Temperature Scanner) are all of an empirical nature. However, there exist theoretical models that allow ocean colour to be expressed as a function of the inherent optical properties of seawater, such as the absorption coefficient and the backscattering coefficient. These properties can in turn be expressed as functions of chlorophyll- a, at least for the so-called Case 1 waters in which phytoplankton may be considered to be the single, independent variable responsible for most of the variations in the marine optical properties. Here, we use such a theoretical approach to model variations in ocean colour as a function of chlorophyll- a concentration, and compare the results with some empirical models in routine use. The parameters of phytoplankton absorption necessary for the implementation of the ocean colour model are derived from our database of over 700 observations of phytoplankton absorption spectra and concurrent measurements of phytoplankton pigments by HPLC (High Performance Liquid Chromatography) techniques. Since there are reports in the literature that significant differences exist in the performance of the algorithms in polar regions compared with lower latitudes, the model is first implemented using observations made at latitudes less than 50. It is then applied to the Labrador Sea, a high-latitude environment. Our results show that there are indeed differences in the performance of the algorithm at high latitudes, and that these differences may be attributed to changes in the optical characteristics of phytoplankton that accompany changes in the taxonomic composition of their assemblages. The sensitivities of the model to assumptions made regarding absorption by coloured dissolved organic matter (or yellow substances) and backscattering by particles are examined. The importance of Raman scattering on ocean colour and its influence on the algorithms are also investigated.  相似文献   

4.
Understanding the diurnal variability of ocean optical properties is critical for better interpretation of satellite ocean colour data and characterizing biogeochemical processes. The daytime variability of ocean optical properties throughout an algal bloom event is analysed in this article based on in situ observations from dawn to dusk at a fixed coastal site in the South China Sea. Diurnal variability during the sunlit period of the ocean optical properties is found to be significant. During the 6 hours around noon, the temporal variability (defined by the coefficient of variation) of phytoplankton absorption, coloured dissolved organic matter and non-algal particle absorption, and particle backscattering at 443 nm can reach 21% ± 15%, 12% ± 9%, and 17% ± 9%, respectively. The diurnal variability during the bloom is much more pronounced than that of the non-bloom phase. With atmospheric radiative transfer modelling, it is further demonstrated that the geostationary satellite detection of within-day optical variability in algae-dominated waters depends on the reliability of the aerosol retrieval. The implications of the diurnal bio-optical variability for the retrieval, validation, and interpretation of satellite ocean colour products are also discussed.  相似文献   

5.
Surface water samples collected during the monsoon and inter-monsoon seasons of 2009 off the east coast of Peninsular Malaysia have been analysed for concentrations of total chlorophyll, suspended particulates and coloured dissolved organic matter (CDOM). Spectral absorption coefficients of dissolved and particulate materials have also been measured. Significant seasonal variabilities in concentrations and optical properties were reported with high concentrations of all parameters during the northeast monsoon (NEM) season and low during the southwest monsoon (SWM) and inter-monsoon seasons. Contrary to previous reports on the oligotrophic nature of the waters during the inter-monsoon season, relatively high concentrations of chlorophyll (>3 mg m?3) were observed at offshore stations in the study area in the spring and fall inter-monsoon months. The chlorophyll-specific absorption spectrum changes with the seasons with the greatest absorption per unit chlorophyll during the SWM and the least during the inter-monsoon seasons, probably in response to seasonal changes in phytoplankton community and cell size structure. The water is classified as optical case 2. At the blue end of the spectrum (440 nm), light absorption by non-phytoplankton materials (CDOM and detritus) accounts for nearly 70% of the total non-water absorption regardless of the season. At the wavelength (676 nm) of the secondary chlorophyll absorption peak in the red part of the spectrum, light absorption by chlorophyll contributes 80–90% to total non-water absorption at most stations and this may provide the basis for remote sensing of phytoplankton chlorophyll in these waters.  相似文献   

6.
In order to acquire inherent optical properties to serve the lake water colour/quality remote sensing in Taihu Lake 67 samples were distributed almost all over the lake. Surface water samples were collected and returned to the laboratory for the subsequent processing and analysis. In the laboratory, the absorptions due to the total particulate matter, non‐algal particulate matter, phytoplankton pigment, and CDOM, together with their concentrations were measured and/or calculated, respectively. Then their absorption properties were analysed and compared with those of other lake waters and/or coastal/open waters. Some different and similar characteristics were uncovered. On the one hand, it provides not only a solid basement for the Taihu Lake water colour/quality remote sensing with semi‐analytical/analytical approach but also a typical case for inherent optical properties of case two water especially for inland freshwater lakes. On the other, it is very helpful to improve the practical and intensive application and development of remote sensing in monitoring lake water quality.  相似文献   

7.
Abstract

Variations of marine surface optical properties (generally grouped under the term ‘sea surface colour’) are due to dissolved and suspended materials, with different absorption and scattering characteristics, present in sea water. Remote assessments of sea surface colour, therefore, can be used to determine the presence and abundance of water constituents such as biological pigments, suspended sediments or other products of organic matter degradation (the so-called yellow substance). In open sea waters, the pigments due to biological activities, and particularly phytoplankton chlorophyll-like pigments, are the main contributors to surface colour. Hence, observations in the visible spectrum can provide synoptic and repetitive information on parameters linked to biological production and patchiness, or bio-geo-chemical cycles in general. Since water constituents act as tracers of various marine processes, bio-optical patterns on the sea surface can also provide indications about the relationships existing between forcing mechanisms and biological response in the marine environment. These capabilities render optical remote sensing an invaluable tool in the field of biological oceanography, although atmospheric processes and signal ambiguities in the water column may pose severe limitations on this technique. The feasibility and potential of passive remote sensing in the visible spectrum have been demonstrated primarily by the Coastal Zone Color Scanner (CZCS) experiment. Important results of this experiment have been reported in the study of coastal phenomena, sediment transport, frisheries, upwelling, climatic events, and factors controlling the distribution, growth and fate of phytoplankton. On these latter topics, indications of a strong coupling between dynamical and bio-optical conditions of the marine environment are emerging from the analysis of CZCS image series, for open ocean, near-coastal and enclosed basin conditions. Examples of such studies, covering regions of both the North Atlantic and North Pacific Oceans and of the Mediterranean Sea, provide clues on the promises of large-scale sea surface colour assessments in the field of biological oceanography.  相似文献   

8.
Water spectral absorption characteristics of eutrophic lakes are largely different from those of ocean and coastal waters. We therefore studied them with the aim of establishing an analytical model for inland water colour, to be used in remote sensing. Field measurements were carried out on 16 and 17 August 2006 (summer), 5 and 6 November 2006 (winter), and 29 and 30 March 2007 (spring) at 15 stations in northern Lake Taihu (China). Chromophoric dissolved organic matter (CDOM) absorption coefficients (a CDOM) are higher in summer than in spring and winter, with the ratios of a CDOM in spring, summer and winter being approximately 1 : 4.0 : 1.2 at both UV‐C and UV‐B. The spectral slope S CDOM values change with wavelength and season, and covary with CDOM concentration, as shown by regression analysis. For the CDOM absorption spectrum in the wavelength region 500–700 nm (important for water colour remote sensing), a linear method simulates better than an exponential method. Seasonal variations in non‐algal particulate (NAP) absorption (a NAP) at blue, green and red wavelengths show better consistency, in the order winter>spring>summer. The average S NAP is 0.0065±0.0009 nm?1, which is lower than that in other types of waters. Phytoplankton absorption (a ph) peak height changes with the season, with the pattern summer>winter>spring, and phytoplankton absorption spectra can be expressed with high accuracy by a quadratic model. CDOM absorption contributions in the three seasons are low compared to phytoplankton and NAP.  相似文献   

9.
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) was designed to measure ocean colour, the spectral variation of water-leaving radiance that can be related to the concentrations of phytoplankton pigments, coloured dissolved organic material and suspended particulate matter. The Dundee Satellite Receiving Station records and archives 1-km imagery covering the European shelf-seas, north-east Atlantic Ocean and Mediterranean Sea, which is subsequently processed in near-real time by Plymouth Marine Laboratory using SeaWiFS Automatic Processing System (SeaAPS). SeaWiFS imagery is combined with contemporary Advanced Very High Resolution Radiometer (AVHRR) sea surface temperature data to provide products, supplied via the World Wide Web, that are used within many areas of oceanographic research.  相似文献   

10.
A time series was conducted in the Menai Strait from March to December 1996 combining optical measurements by a colour sensor with measurements of light-absorbing constituents in the water. In order to improve estimations of pigment concentration in Case-2 waters, an optical model was used to synthesize the spectrum of sea-leaving radiance from the absorption properties of pure sea water, yellow substances, mineral suspended solids and phytoplankton. The original model was tested and improved by using a different set of parameters. Multiple regression was used to empirically relate colour ratios to pigments and total suspended solids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号