首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Guaranteeing the eventual execution of tasks in machines that are prone to unpredictable crashes and restarts may be challenging, but is also of high importance. Things become even more complicated when tasks arrive dynamically and have different computational demands, i.e., processing time (or sizes). In this paper, we focus on the online task scheduling in such systems, considering one machine and at least two different task sizes. More specifically, algorithms are designed for two different task sizes while the complementary bounds hold for any number of task sizes bigger than one. We look at the latency and 1-completed load competitiveness properties of deterministic scheduling algorithms under worst-case scenarios. For this, we assume an adversary, that controls the machine crashes and restarts as well as the task arrivals of the system, including their computational demands. More precisely, we investigate the effect of resource augmentation—in the form of processor speedup—in the machine’s performance, by looking at the two efficiency measures for different speedups. We first identify the threshold of the speedup under which competitiveness cannot be achieved by any deterministic algorithm, and above which there exists some deterministic algorithm that is competitive. We then propose an online algorithm, named \(\gamma \text{-Burst } \), that achieves both latency and 1-completed-load competitiveness when the speedup is over the threshold. This also proves that the threshold identified is also sufficient for competitiveness.  相似文献   

2.
Modern cyber-physical systems assume a complex and dynamic interaction between the real world and the computing system in real-time. In this context, changes in the physical environment trigger changes in the computational load to execute. On the other hand, task migration services offered by networked control systems require also management of dynamic real-time computing load in nodes. In such systems it would be difficult, if not impossible, to analyse off-line all the possible combinations of processor loads. For this reason, it is worthwhile attempting to define new flexible architectures that enable computing systems to adapt to potential changes in the environment.We assume a system composed by three main components: the first one is responsible of the management of the requests arisen when new tasks require to be executed. This management component asks to the second component about the resources available to accept the new tasks. The second component performs a feasibility analysis to determine if the new tasks can be accepted coping with its real-time constraints. A new processor speed is also computed. A third component monitors the execution of tasks applying a fixed priority scheduling policy and additionally controlling the frequency of the processor.This paper focus on the second component providing a “correct” (a task never is accepted if it is not schedulable) and “near-exact” (a task is rarely rejected if it is schedulable) algorithm that can be applicable in practice because its low/medium and predictable computational cost. The algorithm analyses task admission in terms of processor frequency scaling. The paper presents the details of a novel algorithm to analyse tasks admission and processor frequency assignment. Additionally, we perform several simulations to evaluate the comparative performance of the proposed approach. This evaluation is made in terms of energy consumption, task rejection ratios, and real computing costs. The results of simulations show that from the cost, execution predictability, and task acceptance points of view, the proposed algorithm mostly outperforms other constant voltage scaling algorithms.  相似文献   

3.
We consider the problem of preemptively scheduling a set of periodic, real-time tasks on a multiprocessor computer system. We give a new scheduling algorithm, the so-called Slack-Time Algorithm, and show that it is more effective than the known Deadline Algorithm. We also give an (exponential-time) algorithm to decide if a task system is schedulable by the Slack-Time or the Deadline Algorithm. The same algorithm can also be used to decide if a task system is schedulable by any given fixed-priority scheduling algorithm. This resolves an open question posed by Leung and Whitehead. Finally, it is shown that the problem of deciding if a task system is schedulable by the Slack-Time, the Deadline, or any given fixed-priority scheduling algorithm is co-NP-hard for each fixedm.  相似文献   

4.
为适应实际系统中任务集的不断变化以及不可忽视状态切换开销的要求,针对多核多处理器系统中常见的周期任务模型,提出一种基于动态松弛时间回收的开销敏感节能实时调度算法DSROM,在每个TL面的初始时刻、任务提前完成时刻实现节能调度及动态松弛时间回收,在不违反周期任务集可调度性的基础上,达到实时约束与能耗节余之间的合理折衷。模拟实验结果表明,DSROM算法不仅保证了周期任务集的最优可调度性,而且当任务集总负载超过某一个值后,其节能效果整体优于现有方法,最多可节能近20%。  相似文献   

5.
Optimal virtual cluster-based multiprocessor scheduling   总被引:1,自引:1,他引:0  
Scheduling of constrained deadline sporadic task systems on multiprocessor platforms is an area which has received much attention in the recent past. It is widely believed that finding an optimal scheduler is hard, and therefore most studies have focused on developing algorithms with good processor utilization bounds. These algorithms can be broadly classified into two categories: partitioned scheduling in which tasks are statically assigned to individual processors, and global scheduling in which each task is allowed to execute on any processor in the platform. In this paper we consider a third, more general, approach called cluster-based scheduling. In this approach each task is statically assigned to a processor cluster, tasks in each cluster are globally scheduled among themselves, and clusters in turn are scheduled on the multiprocessor platform. We develop techniques to support such cluster-based scheduling algorithms, and also consider properties that minimize total processor utilization of individual clusters. In the last part of this paper, we develop new virtual cluster-based scheduling algorithms. For implicit deadline sporadic task systems, we develop an optimal scheduling algorithm that is neither Pfair nor ERfair. We also show that the processor utilization bound of us-edf{m/(2m−1)} can be improved by using virtual clustering. Since neither partitioned nor global strategies dominate over the other, cluster-based scheduling is a natural direction for research towards achieving improved processor utilization bounds.
Insup LeeEmail:
  相似文献   

6.
Due to polynomial time complexity, utilization based tests are desired for online feasibility analysis of periodic task systems. However, the associated disadvantage with these tests is that they propose a bound on system utilization, which trade processor utilization for performance. On the contrary, response time based tests share pseudo-polynomial time complexity, which are very expensive in terms of analysis time and therefore, impractical for analyzing feasibility of online systems. Realizing the advantage of utilization based tests over response time tests, attempts are being made to propose utilization based exact tests that achieve 100% CPU utilization for the system by modifying task parameters such as restricting task periods to be harmonic. We show that in systems where task deadlines are large, better results are obtained by making the task deadlines harmonic. The paper proposes a novel solution to feasibility problem of periodic task system under the assumption of composite deadline by providing a utilization based exact test with an upper bound of 1 and complexity O(n).  相似文献   

7.
Non-Preemptive Real-Time Scheduling of Multimedia Tasks   总被引:1,自引:0,他引:1  
Motivated by the special characteristics of multimedia tasks, we consider non-preemptive scheduling of tasks where there exists no (or very limited) information concerning the tasks before they are released. We present impossibility results and analyze algorithms for non-preemptive scheduling in single processor and multiprocessor systems. To evaluate our algorithm we assume that system obtains a value that is proportional to the processing time of the task whenever a task is completed by its deadline. Competitive analysis is used, where the goal is to keep the total value obtained by an on-line algorithm bounded by a function of the total value obtained by an off-line algorithm. In particular, one set of our results considers the competitive ratio of scheduling algorithm when the length of the tasks is not greater than Cmax (and not smaller than Cmin ). We show that the performance of a scheduling algorithm is improved dramatically when the release time of the tasks is O(Cmax) prior to their deadline; achieving a competitive ratio that is close to one.  相似文献   

8.
The problem of feasibility analysis of asynchronous periodic task sets, where tasks can have an initial offset, is known to be co-NP-complete in the strong sense. A sufficient pseudo-polynomial test has been proposed by Baruah, Howell and Rosier, which consists in analyzing the feasibility of the corresponding synchronous task set (i.e. all offsets are set equal to 0). If the test gives a positive result, then the original asynchronous task set is feasible; else, no definitive answer can be given. In many cases, this sufficient test is too pessimistic, i.e. it gives no response for many feasible task sets.In this paper, we present a new sufficient pseudo-polynomial test for asynchronous periodic task sets. Our test reduces the pessimism by explicitely considering the offsets in deriving a small set of critical arrival patterns. We show, trough a set of extensive simulations, that our test outperforms the previous sufficient test.Rodolfo Pellizzoni received the Laurea degree in Computer Engineering from the Università di Pisa and the Diploma degree from the Scuola Superiore SantAnna, in 2004. He is presently a Ph.D. student in the Department of Computer Science at the University of Illinois at Urbana-Champaign. His main research interests are in real-time operating systems, scheduling theory and resource-allocation in distributed and multiprocessor systems.Giuseppe Lipari graduated in Computer Engineering at the University of Pisa in 1996, and received the Ph.D. degree in Computer Engineering from Scuola Superiore SantAnna in 2000. During 1999, he was a visiting student at University of North Carolina at Chapel Hill, collaborating with professor S.K. Baruah and professor K. Jeffay on real-time scheduling. Currently, he is assistant professor of Operating Systems with Scuola Superiore SantAnna. His main research activities are in real-time scheduling theory and its application to real-time operating systems, soft real-time systems for multimedia applications and component-based real-time systems.  相似文献   

9.
Rate monotonic and deadline monotonic scheduling are commonly used for periodic real-time task systems. This paper discusses a feasibility decision for a given real-time task system when the system is scheduled by rate monotonic and deadline monotonic scheduling. The time complexity of existing feasibility decision algorithms depends on both the number of tasks and maximum periods or deadlines when the periods and deadlines are integers. This paper presents a new necessary and sufficient condition for a given task system to be feasible and proposes a new feasibility decision algorithm based on that condition. The time complexity of this algorithm depends solely on the number of tasks. This condition can also be applied as a sufficient condition for a task system using priority inheritance protocols to be feasible with rate monotonic and deadline monotonic scheduling.  相似文献   

10.
In this paper we study the scheduling of parallel and real-time recurrent tasks on multiprocessor platforms. Firstly, we propose a new parallel task model which allows recurrent tasks to be composed of several phases, each one composed of several threads. Each thread requires a single processor for execution and can be scheduled simultaneously. We then propose an algorithm to transpose popular Fork-Join task model to our MPMT task model. Secondly, we define several kinds of real-time schedulers that can be applied to our parallel task model. We distinguish between two scheduling classes: Hierarchical schedulers and Global Thread schedulers. We present and prove correct an exact schedulability test for each class. Lastly, we also evaluate the performance of our scheduling paradigm in comparison with Gang scheduling by means of simulations. In this work we extend the work of Lupu and Goossens in Scheduling of hard real-time multi-thread periodic tasks (Real-Time and Network Systems, 2011) which considers mono-phase multi-thread task model. We extend their previous results to a Multi-Phase Multi-Thread task model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号