首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
This paper investigates the global practical tracking via adaptive output‐feedback for a class of uncertain nonlinear systems. Essentially different from the closely related literature, the system under investigation possesses unknown time‐varying control coefficients and a polynomial‐of‐output growth rate, and meanwhile, the system nonlinearities and the reference signal allow serious unknowns. For this, an adaptive observer is designed to reconstruct the system unmeasured states, where a new dynamic gain is introduced to compensate the serious unknowns in the system nonlinearities and the reference signal. Based on this and by backstepping technique, an adaptive output‐feedback controller is successfully designed, such that all the states of the closed‐loop system are bounded, and the tracking error will be prescribed sufficiently small after a finite time. A numerical simulation is provided to demonstrate the effectiveness of the proposed method.  相似文献   

2.
This paper investigates the global output-feedback stabilization for a class of uncertain time-varying nonlinear systems. The remarkable structure of the systems is the presence of uncertain control coefficients and unmeasured states dependent growth whose rate is inherently time-varying and of unknown polynomial-of-output, and consequently the systems have heavy nonlinearities, serious uncertainties/unknowns and serious time-variations. This forces us to explore a time-varying plus adaptive methodology to realize the task of output-feedback stabilization, rather than a purely adaptive one. Detailedly, based on a time-varying observer and transformation, an output-feedback controller is designed by skillfully combining adaptive technique, time-varying technique and well-known backstepping method. It is shown that, with the appropriate choice of the design parameters/functions, all the signals of the closed-loop system are bounded, and furthermore, the original system states globally converge to zero. It is worth mentioning that, the heavy nonlinearities are compensated by an updating law, while the serious unknowns and time-variations are compensated by a time-varying function. The designed controller is still valid when the system has an additive input disturbance which, essentially different from those studied previously, may not be periodic or bounded by any known constant.  相似文献   

3.
本文研究了一类不确定非线性系统的动态事件触发输出反馈镇定问题. 显著不同的是系统具有依赖于不可测状态的增长且增长率为输出的未知多项式. 尽管已有一些连续自适应控制器, 但需要巧妙融合非线性状态观测器、系统未知性的动态补偿以及非线性的抵御, 因此这些控制器具有一定的脆弱性, 不能平凡地拓展到不连续情形 (采样误差导致). 为此, 首先通过引入动态高增益和基于高增益的观测器来分别抵御未知增长率和重构系统不可测状态. 进而, 意识到静态事件触发机制的无效性, 通过引入动态事件触发机制, 成功设计出了事件触发输出反馈控制器, 确保了系统状态的全局有界性和收敛性. 数值仿真验证了所设计控制器的有效性.  相似文献   

4.
This paper considers the global stabilization via time‐varying output‐feedback for a class of high‐order uncertain nonlinear systems with rather weak assumptions. Essentially different from the existing literature, the systems under investigation simultaneously have more serious nonlinearities, unknowns, immeasurableness, and time‐variations, which are indicated from the unknown time‐varying control coefficients and the higher‐order and lower‐order unmeasured states dependent growth with the rate of unknown function of time and output. Recognizing that adaptive technique is quite hard to apply, a time‐varying design scheme is proposed by combining time‐varying approach, certainty equivalence principle and homogeneous domination approach. One key point in the design scheme is the selection of the design functions of time, in order to compensate/capture the serious unknowns and serious time‐variations, and another one is the design of a time‐varying observer to rebuild the unmeasured system states. With the appropriate choice of the involved design functions, the designed controller makes all the signals of the closed‐loop system globally bounded and ultimately converge to zero. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
We consider a single-input-single-output nonlinear system which can be represented globally by an input-output model. The system is input-output linearizable by feedback and is required to satisfy a minimum phase condition. The nonlinearities are not required to satisfy any global growth condition. The model depends linearly on unknown parameters which belong to a known compact convex set. We design a semiglobal adaptive output feedback controller which ensures that the output of the system tracks any given reference signal which is bounded and has bounded derivatives up to the nth order, where n is the order of the system. The reference signal and its derivatives are assumed to belong to a known compact set. It is also assumed to be sufficiently rich to satisfy a persistence of excitation condition. The design process is simple. First we assume that the output and its derivatives are available for feedback and design the adaptive controller as a state feedback controller in appropriate coordinates. Then we saturate the controller outside a domain of interest and use a high-gain observer to estimate the derivatives of the output. We prove, via asymptotic analysis, that when the speed of the high-gain observer is sufficiently high, the adaptive output feedback controller recovers the performance achieved under the state feedback one  相似文献   

6.
一类不确定非线性系统自适应输出反馈跟踪控制的新结果   总被引:3,自引:0,他引:3  
研究了一类不确定非线性系统的自适应输出反馈实际跟踪控制问题. 解决该控制问题的困难主要源于此类系统控制系数不确定, 并具有依赖于不可测状态的增长且其增速是关于输出的多项式函数. 首先, 通过推广现有的K–滤波器, 引入了新的动态高增益K–滤波器, 并基于此构造了状态观测器. 然后, 应用反推技术, 成功的设计了系统的自适应输出反馈跟踪控制器. 主要结果表明, 通过设计参数的适当选择, 所构造的控制器能保证闭环系统的所有状态全局有界, 并且当时间足够大时, 跟踪误差收敛到零点的既定小邻域内.  相似文献   

7.
本文研究了一类增长线性地依赖于不可测状态非线性系统的输出反馈自适应实用跟踪问题.很不同的是,本文所研究系统的增长率是输出的未知多项式(系数未知、幂次已知),且关于被跟踪参考信号的假设相当弱(仅本身和其导数为已知的),为解决该问题,通过灵活采用通用控制和死区的思想和方法,引入了带有新型动态增益的观测器来重构不可测的系统状态,进而构造了自适应输出反馈跟踪控制器.可以证明,当控制器中的设计参数适当选取时,闭环系统所有状态有界,并且跟踪误差趋于事先给定的充分小的区域.数值仿真说明了所提方法的有效性.  相似文献   

8.
9.
This paper studies the problem of global output feedback control for nonlinear time-delay systems with input matching uncertainty and the unknown output function, whose nonlinearities are bounded by lower triangular linear unmeasured states multiplying the unknown constant, polynomial-of-output and polynomial-of-input growth rates. By constructing a new extended state observer and skillfully combining the dynamic gain method, backstepping method and Lyapunov–Krasovskii theorem, a delay-independent output feedback controller can be developed with only one dynamic gain. It is proved that all the signals of the closed-loop system are bounded, the states of the original system and the corresponding observer converge to zero, and the estimation of input matching uncertainty converges to its actual value. Two examples demonstrate the effectiveness of the control scheme.  相似文献   

10.
An adaptive output feedback controller for nonlinear systems with nonlinearities depending on the first r (1⩽r⩽n) derivatives of the output is proposed. The derivatives are estimated with a partial state high-gain observer, and the remaining states are handled using a backstepping method. Compared with methods based on full state high-gain observer, this approach improves robustness with respect to measurement noise and avoids overparametrization. Semiglobal tracking is proven under the assumption that the regressor is persistently exciting  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号