首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
考虑到已有的半监督维数约减方法在利用边信息时将所有边信息等同,不能充分挖掘边所含信息,提出加权成对约束半监督局部维数约减算法(WSLDR).通过构建近邻图对边信息进行扩充,使边信息数量有所增加.另外,根据边所含信息量的不同构建边的权系数矩阵.将边信息融入近邻图对其进行修正,对修正后的近邻图和加权的成对约束寻找最优投影.算法不仅保持了数据的内在局部几何结构,而且使得类内数据分布更加紧密,类间数据分布更加分散.在UCI数据集上的实验结果验证了该算法的有效性.  相似文献   

2.
针对基于局部与全局保持的半监督维数约减算法(LGSSDR)对部域参数选择比较敏感以及对部域图边权值设定不够准确的问题,提出一种基于局部重构与全局保持的半监督维数约减算法(工RGPSSDR)。该算法通过最小化局部重构误差来确定部域图的边权值,在保持数据集局部结构的同时能够保持其全局结构。在Extended YaleB和CMU PIE标准人脸库上的实验结果表明LRGPSSDR算法的分类性能要优于其它半监督维数约减算法。  相似文献   

3.
基于局部与全局保持的半监督维数约减方法   总被引:8,自引:1,他引:7       下载免费PDF全文
韦佳  彭宏 《软件学报》2008,19(11):2833-2842
在很多机器学习和数据挖掘任务中,仅仅利用边信息(side-information)并不能得到最好的半监督学习(semi-supervised learning)效果,因此,提出一种基于局部与全局保持的半监督维数约减(local and global preserving based semi-supervised dimensionality reduction,简称LGSSDR)方法.该算法不仅能够保持正、负约束信息而且能够保持数据集所在低维流形的全局以及局部信息.另外,该算法能够计算出变换矩阵并较容易地处理未见样本.实验结果验证了该算法的有效性.  相似文献   

4.
现有基于边信息的半监督维数约减算法大都是直接将保留边信息和数据拓扑结构的目标函数相加,因此数据拓扑结构中的错误连接不会因已知的边信息而得到修正.提出通过边信息传播及修正机制将边信息融入到数据拓扑结构图中的方法,从而在保留边信息的同时保留更为真实的数据拓扑结构信息.实验结果表明本文所提出的算法较之其它算法,对数据降维后用于分类时可取得较高的准确率,且算法对创建的KNN图中的参数K最具鲁棒性.  相似文献   

5.
提出一种非线性维数约减算法——自组织等距嵌入实现高维文档数据的压缩,并在文档聚类实验中,与经典的线性维数约减算法—隐含语义索引进行了比较研究。实验结果表明,在复杂度显著低于LSI算法的同时,SIE算法取得了优于LSI算法的性能,且高于基准性能。  相似文献   

6.
半监督维数约简是指借助于辅助信息与大量无标记样本信息从高维数据空间找到一个最优低维判别空间,便于后续的分类或聚类操作,它被看作是理解基因序列、文本与人脸图像等高维数据的有效方法。提出一个基于成对约束的半监督维数约简一般框架(SSPC)。该方法首先通过使用成对约束和无标号样本的内在几何结构学习一个判别邻接矩阵;其次,新方法应用学到的投影将原来高维空间中的数据映射到低维空间中,以至于聚类内的样本之间距离变得更加紧凑,而不同聚类间的样本之间距离变得尽可能得远。所提出的算法不仅能找到一个最佳的线性判别子空间,还可以揭示流形数据的非线性结构。在一些真实数据集上的实验结果表明,新方法的性能优于当前主流基于成对约束的维数约简算法的性能。  相似文献   

7.
基于自组织的鲁棒非线性维数约减算法   总被引:4,自引:0,他引:4  
现有的非线性维数约减算法需要求解大尺度特征值问题.由于特征值问题至少二次的计算复杂性,这类算法在大样本集上的应用较受限制.此外,现有算法的全局优化机制对于噪声较为敏感,且需要考虑“病态矩阵”的计算精度问题.提出时间复杂性为O(NlogN)的自组织非线性维数约减算法SIE.SIE的主要计算过程是局域的,可提高算法抗噪性、回避病态矩阵的计算精度问题.仿真表明,对于无噪数据和含噪数据,SIE均可获得优化或近似优化的重构质量.  相似文献   

8.
针对现有的半监督降维算法没有考虑存在于数据集中的大量未标记信息,不能得到最好的降维效果的问题。本文提出了一种改进的基于权值的局部保持半监督降维算法。该算法在保持正、负约束信息的同时,还利用距离权值来保持数据集所在的局部结构,从而提高降维效果。在UCI数据集上的实验表明,该算法能够提高降维的效果,尤其是在数据分布特性不满足流形结构时,仍能得到较好的聚类结果。  相似文献   

9.
现有的主要非线性维数约减算法,如SIE和Isomap等,其邻域参数的设定是全局性的。仿真表明,对于局域流形结构差异较大的数据集,全局一致的邻域参数可能无法获得合理的嵌入结果。为此给出基于局域主方向重构的适应性邻域选择算法。算法首先为每个参考点选择一个邻域集,使各邻域集近似处于局域主线性子空间,并计算各邻域集的基向量集;再由基向量集对各邻域点的线性拟合误差判定该邻域点与主线性子空间的偏离程度,删除偏离较大的点。仿真表明,基于局域主方向重构的适应性邻域选择可有效处理局域流形结构差异较大的数据集;且相对于已有的适应性邻域选择算法,可以更好屏蔽靠近参考点的孤立噪声点及较大的空间曲率导致的虚假连通性。  相似文献   

10.
由于高维特征空间通常会导致不适定问题,针对高光谱影像的统计模式识别是非常艰巨的任务。随着波段数目的增加,高光谱影像分析则面临Hughes现象等障碍,因此促进了降维方法的发展,它能够有效处理有限训练样本下的高维数据集情形。降维算法的目标是在保持原始数据主要本征信息的同时获取高维数据样本的低维表示。为了能够有效解决高光谱影像分析中的"维数灾难"问题,从而改进后续计算复杂度,我们引入一种半监督局部保持的降维算法。  相似文献   

11.
李森  刘希玉 《计算机应用研究》2012,29(11):4093-4096
针对高维数据的聚类问题,提出一种基于间隔Fisher分析(MFA)的半监督聚类算法。该算法首先使用已标记样本进行MFA映射,得到投影矩阵W后,再利用求得的投影方法对未标记样本进行降维;然后在低维空间引入基于约束的球形K-means(PCSKM)算法对降维后的数据进行半监督聚类,根据第一次的聚类结果,交替进行降维与聚类操作,直到算法收敛为止。该算法利用监督信息有效地集成了数据降维和半监督聚类。实验结果表明,该方法能够有效处理高维数据,同时能提高聚类性能。  相似文献   

12.
半监督降维方法的实验比较   总被引:5,自引:0,他引:5  
半监督学习是近年来机器学习领域中的研究热点之一,已从最初的半监督分类和半监督聚类拓展到半监督回归和半监督降维等领域.目前,有关半监督分类、聚类和回归等方面的工作已经有了很好的综述,如Zhu的半监督学习文献综述.降维一直是机器学习和模式识别等相关领域的重要研究课题,近年来出现了很多将半监督思想用于降维,即半监督降维方面的工作.有鉴于此,试图对目前已有的一些半监督降维方法进行综述,然后在大量的标准数据集上对这些方法的性能进行实验比较,并据此得出了一些经验性的启示.  相似文献   

13.
维数灾难是机器学习算法在高维数据上学习经常遇到的难题,基于局部敏感判别分析(locality sensitive discriminant analysis,LSDA),可以很好地解决维数灾难问题.且LSDA构建邻域时不能充分反映流形学习对邻域要求和克服测度扭曲问题,利用自适应邻域选择方法来度量邻域,同时,引入施密特正交化获得正交投影矩阵,提出一种自适应邻域选择的正交局部敏感判别分析算法.在ORL和YALE人脸数据库上进行实验,实验结果表明了该算法的有效性.  相似文献   

14.
最小距离鉴别投影及其在人脸识别中的应用   总被引:2,自引:1,他引:1       下载免费PDF全文
针对人脸识别问题,提出了最小距离鉴别投影算法,其与经典的线性鉴别分析不同,它是一种流形学习降维算法。该算法首先定义样本的类内相似度与类间相似度:前者能够度量样本与类内中心的距离关系,后者不仅能够反映样本与类间中心的距离关系而且能够反映样本类间距与类内距的大小关系;然后将高维数据映射到低维特征空间,使得样本到类内中心距离最小同时到类间中心距离最大。最后,在ORL、FERET及AR人脸库上的实验结果表明所提算法识别性能要优于其他算法。  相似文献   

15.
Linear dimensionality reduction (LDR) techniques have been increasingly important in pattern recognition (PR) due to the fact that they permit a relatively simple mapping of the problem onto a lower-dimensional subspace, leading to simple and computationally efficient classification strategies. Although the field has been well developed for the two-class problem, the corresponding issues encountered when dealing with multiple classes are far from trivial. In this paper, we argue that, as opposed to the traditional LDR multi-class schemes, if we are dealing with multiple classes, it is not expedient to treat it as a multi-class problem per se. Rather, we shall show that it is better to treat it as an ensemble of Chernoff-based two-class reductions onto different subspaces, whence the overall solution is achieved by resorting to either Voting, Weighting, or to a Decision Tree strategy. The experimental results obtained on benchmark datasets demonstrate that the proposed methods are not only efficient, but that they also yield accuracies comparable to that obtained by the optimal Bayes classifier.  相似文献   

16.
稀疏保持投影算法是一种无监督的全局线性降维方法,无法应对训练样本不足及类内样本间差异过大的情况。针对该问题,提出一种结合成对约束机制的近邻稀疏保留投影算法。利用近邻样本求取稀疏系数以保留局部结构信息,引入成对约束监督的思想,利用样本类别指导稀疏重构过程,最后定义能最大限度保留稀疏系数中蕴含的类别信息的低维子空间。将该算法用于人脸识别,实验结果证明了算法在识别率以及运行时间上的有效性和可行性。  相似文献   

17.
张量局部Fisher判别分析的人脸识别   总被引:3,自引:0,他引:3       下载免费PDF全文
子空间特征提取是人脸识别中的关键技术之一,结合局部Fisher判别分析技术和张量子空间分析技术的优点, 本文提出了一种新的张量局部Fisher判别分析(Tensor local Fisher discriminant analysis, TLFDA)子空间降维技术. 首先,通过对局部Fisher判别技术进行分析,调整了其类间散度目标泛函, 使算法的识别性能更高且时间复杂度更低;其次,引入张量型降维技术对输入数据进行双边投影变换而非单边投影, 获得了更高的数据压缩率;最后,采用迭代更新的方法计算最优的变换矩阵.通过ORL和PIE两个人脸库验证了所提算法的有效性.  相似文献   

18.
基于判别分析的半监督聚类方法   总被引:1,自引:0,他引:1  
与无监督聚类相比,半监督聚类是利用一部分先验信息来更好地挖掘和理解数据的内在结构,并紧密遵从用户的偏好。现有的典型半监督聚类算法仅仅适合于低维数据,文中提出一种新颖的基于判别分析的半监督聚类算法来解决高维数据聚类问题。新算法首先使用主成分分析来投影高维数据,进一步在投影空间中,使用基于球形K均值聚类算法对数据聚类;然后利用聚类结果,使用线性判别分析降维输入空间数据;最后在投影空间中对数据再次聚类。在一组真实数据集上的实验表明,所提出的算法不仅可以有效地处理高维数据,还提高了聚类性能。  相似文献   

19.
提出了基于核诱导距离度量的鲁棒判别分析算法(robust discriminant analysis based on kernel-induced distance measure,KI-RDA)。KI-RDA不仅自然地推广了线性判别分析(linear discriminant analysis,LDA),而且推广了最近提出的强有力的基于非参数最大熵的鲁棒判别分析(robust discriminant analysis based on nonparametric maximum entropy,MaxEnt-RDA)。通过采用鲁棒径向基核,KI-RDA不仅能有效处理含噪数据,而且也适合处理非高斯分布的非线性数据,其本质的鲁棒性归咎于KI-RDA通过核诱导的非欧距离代替LDA的欧氏距离来刻画类间散度和类内散度。借助这些散度,为特征提取定义类似LDA的判别准则,导致了相应的非线性优化问题。进一步借助近似策略,将优化问题转化为直接可解的广义特征值问题,由此获得降维变换(矩阵)的闭合解。最后在多类数据集上进行实验,验证了KI-RDA的有效性。由于核的多样性,使KI-RDA事实上成为了一个一般性判别分析框架。  相似文献   

20.
    
Canonical correlation analysis (CCA) is one of the most well-known methods to extract features from multi-view data and has attracted much attention in recent years. However, classical CCA is unsupervised and does not take discriminant information into account. In this paper, we add discriminant information into CCA by using random cross-view correlations between within-class samples and propose a new method for multi-view dimensionality reduction called canonical random correlation analysis (RCA). In RCA, two approaches for randomly generating cross-view correlation samples are developed on the basis of bootstrap technique. Furthermore, kernel RCA (KRCA) is proposed to extract nonlinear correlations between different views. Experiments on several multi-view data sets show the effectiveness of the proposed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号