首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
RSA算法的CUDA高效实现技术   总被引:1,自引:1,他引:0       下载免费PDF全文
CUDA(Compute Unified Device Architecture)作为一种支持GPU通用计算的新型计算架构,在大规模数据并行计算方面得到了广泛的应用。RSA算法是一种计算密集型的公钥密码算法,给出了基于CUDA的RSA算法并行化高效实现技术,其关键为引入大量独立并发的Montgomery模乘线程,并给出了具体的线程组织、数据存储结构以及基于共享内存的性能优化实现技术。根据RSA算法CUDA实现方法,在某款GPU上测试了RSA算法的运算性能和吞吐率。实验结果表明,与RSA算法的通用CPU实现方式相比,CUDA实现能够实现超过40倍的性能加速。  相似文献   

2.
塔台模拟机冲突检测算法是一种耗时大的并行算法。针对其导致塔台模拟系统核心服务器CPU负担过重的缺点,在常用冲突检测算法的基础上,提出一种基于统一设备构架(CUDA)的塔台模拟机冲突检测实现方案。首先介绍GPU并行运算的体系结构基础,并将基于卡尔曼滤波的目标物体跟踪技术的分层冲突检测算法移植到GPU。然后利用相同价格的CPU和GPU对比运算效果。实验结果表明:与相同算法的CPU实现方案相比,GPU实现方案将计算效率提高10~50倍。使用此方案,极大地减轻了核心服务器的负担,使塔台模拟机的性能得到质的提高。  相似文献   

3.
杨升  管群 《计算机工程与设计》2011,32(12):4231-4236
针对泥石流仿真过程中海量数据计算问题,采用CUDA技术即结合CPU与GPU的优点研究了一种协同计算方法以提高数据计算效率和仿真性能。同时,搭建了基于GPU的泥石流仿真计算平台,对优化的CUDA并行计算方法进行验证。实验结果表明,该方法对海量数据的计算具有快速准确、低成本、低功耗的特点,能为灾害预测提供及时准确的决策支持,满足了高密集型计算的需求。  相似文献   

4.
图形处理器(graphic processing unit,GPU)的最新发展已经能够以低廉的成本提供高性能的通用计算。基于GPU的CUDA(compute unified device architecture)和OpenCL(open computing language)编程模型为程序员提供了充足的类似于C语言的应用程序接口(application programming interface,API),便于程序员发挥GPU的并行计算能力。采用图形硬件进行加速计算,通过一种新的GPU处理模型——并行时间空间模型,对现有GPU上的N-body实现进行了分析,从而提出了一种新的GPU上快速仿真N-body问题的算法,并在AMD的HD Radeon 5850上进行了实现。实验结果表明,相对于CPU上的实现,获得了400倍左右的加速;相对于已有GPU上的实现,也获得了2至5倍的加速。  相似文献   

5.
张佳康  陈庆奎 《计算机工程》2010,36(15):179-181
针对具有高浮点运算能力的流处理器设备GPU对神经网络的适用性问题,提出卷积神经网络的并行化识别算法,采用计算统一设备架构(CUDA)技术,并定义其上的并行化数据结构,描述计算任务到CUDA的映射机制。实验结果证明,在GTX200硬件架构的GPU上实现的并行识别算法的平均浮点运算能力峰值较CPU上串行算法提高了近60倍,更适用于神经网络的相关应用。  相似文献   

6.
Sorting is a very important task in computer science and becomes a critical operation for programs making heavy use of sorting algorithms. General‐purpose computing has been successfully used on Graphics Processing Units (GPUs) to parallelize some sorting algorithms. Two GPU‐based implementations of the quicksort were presented in literature: the GPU‐quicksort, a compute‐unified device architecture (CUDA) iterative implementation, and the CUDA dynamic parallel (CDP) quicksort, a recursive implementation provided by NVIDIA Corporation. We propose CUDA‐quicksort an iterative GPU‐based implementation of the sorting algorithm. CUDA‐quicksort has been designed starting from GPU‐quicksort. Unlike GPU‐quicksort, it uses atomic primitives to perform inter‐block communications while ensuring an optimized access to the GPU memory. Experiments performed on six sorting benchmark distributions show that CUDA‐quicksort is up to four times faster than GPU‐quicksort and up to three times faster than CDP‐quicksort. An in‐depth analysis of the performance between CUDA‐quicksort and GPU‐quicksort shows that the main improvement is related to the optimized GPU memory access rather than to the use of atomic primitives. Moreover, in order to assess the advantages of using the CUDA dynamic parallelism, we implemented a recursive version of the CUDA‐quicksort. Experimental results show that CUDA‐quicksort is faster than the CDP‐quicksort provided by NVIDIA, with better performance achieved using the iterative implementation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
为提高大规模并行计算的并行效率,充分发挥CPU与GPU的功能特点,特别是体现GPU强大的运算能力,提出了用消息传递接口(MPI)将一组GPU连接起来。使GPU通用计算与计算流体力学中的LBM(latticeBoltzmannmethod)算法相结合。根据GPU通用计算与LBM算法的原理,使MPI作为计算分配的机制,CUDA(compute unified device architecture)作为主要的计算执行引擎,建立支持CUDA的GPU集群,在集群上对LBM算法中的D2Q9模型进行二维方腔流数值模拟。实验结果表明,利用GPU组模拟与CPU模拟结果一致,更充分发挥了GPU的计算能力,提高了并行效率。  相似文献   

8.
Recent development in Graphics Processing Units (GPUs) has enabled inexpensive high performance computing for general-purpose applications. Compute Unified Device Architecture (CUDA) programming model provides the programmers adequate C language like APIs to better exploit the parallel power of the GPU. Data mining is widely used and has significant applications in various domains. However, current data mining toolkits cannot meet the requirement of applications with large-scale databases in terms of speed. In this paper, we propose three techniques to speedup fundamental problems in data mining algorithms on the CUDA platform: scalable thread scheduling scheme for irregular pattern, parallel distributed top-k scheme, and parallel high dimension reduction scheme. They play a key role in our CUDA-based implementation of three representative data mining algorithms, CU-Apriori, CU-KNN, and CU-K-means. These parallel implementations outperform the other state-of-the-art implementations significantly on a HP xw8600 workstation with a Tesla C1060 GPU and a Core-quad Intel Xeon CPU. Our results have shown that GPU + CUDA parallel architecture is feasible and promising for data mining applications.  相似文献   

9.
CUDA架构下H.264快速去块滤波算法   总被引:1,自引:0,他引:1  
刘虎  孙召敏  陈启美 《计算机应用》2010,30(12):3252-3254
针对H.264/AVC视频编码标准中去块滤波器运算复杂度高、耗时巨大这一难题,提出了一种基于NVIDIA计算统一设备架构(CUDA)平台的H.264并行快速去块滤波算法,介绍了CUDA平台硬件结构特点与软件开发流程,根据图形处理器(GPU)的并发结构特点,对BS判定与滤波计算进行了并行优化,降低了算法复杂度,利用共享内存提高了数据访问速率,实现了去块滤波器的并行处理。实验结果表明,在图像质量基本不变的情况下,GPU算法能够明显提高运算速度,平均加速比在20倍左右,取得了良好的效果。  相似文献   

10.
Power efficiency investigation has been required in each level of a High Performance Computing (HPC) system because of the increasing computation demands of scientific and engineering applications. Focusing on handling the critical design constraints in the software level that run beyond a parallel system composed of huge numbers of power-hungry components, we optimize HPC program design in order to achieve the best possible power performance on the target hardware platform. The power performance of a CUDA Processing Element (PE) is determined by both hardware factors including power features of each component including with CPU, GPU, main memory and PCI buses, and their interconnection architecture; and software factors including algorithm design and the character of executable instructions performed on it. In this paper, approaches to model and evaluate the power consumption of large scale SIMD computation by CUDA PEs on multi-core and GPU platforms are introduced. The model allows obtaining design characteristic values at the early programming stage, thus benefitting programmers by providing the necessary environment information for choosing the best power-efficient alternative. Based on the model, CPU Dynamic frequency scaling (DFS) can be applied on CUDA PE architecture that adjusts CPU frequency to enhance power efficiency of the entire PE without compromising its computing performance. The power model and power efficiency improvements of the new designs have been validated by measuring the new programs on the real GPU multiprocessing system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号