首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Many hard examples in exact phase transitions   总被引:1,自引:0,他引:1  
This paper analyzes the resolution complexity of two random constraint satisfaction problem (CSP) models (i.e. Model RB/RD) for which we can establish the existence of phase transitions and identify the threshold points exactly. By encoding CSPs into CNF formulas, it is proved that almost all instances of Model RB/RD have no tree-like resolution proofs of less than exponential size. Thus, we not only introduce new families of CSPs and CNF formulas hard to solve, which can be useful in the experimental evaluation of CSP and SAT algorithms, but also propose models with both many hard instances and exact phase transitions. Finally, conclusions are presented, as well as a detailed comparison of Model RB/RD with the Hamiltonian cycle problem and random 3-SAT, which, respectively, exhibit three different kinds of phase transition behavior in NP-complete problems.  相似文献   

2.
随机约束满足问题的相变现象及求解算法是NP-完全问题的研究热点。RB模型(Revised B)是一个非平凡的随机约束满足问题,它具有精确的可满足性相变现象和极易产生难解实例这两个重要特征。针对RB模型这一类具有大值域的随机约束满足问题,提出了两种基于模拟退火的改进算法即RSA(Revised Simulated Annealing Algorithm)和GSA(Genetic-simulated Annealing Algorithm)。将这两种算法用于求解RB模型的随机实例,数值实验结果表明:在进入相变区域时,RSA和GSA算法依然可以有效地找到随机实例的解,并且在求解效率上明显优于随机游走算法。在接近相变阈值点时,由这两种算法得到的最优解仅使得极少数的约束无法满足。  相似文献   

3.
Model RB is a model of random constraint satisfaction problems, which exhibits exact satisfiability phase transition and many hard instances, both experimentally and theoretically. Benchmarks based on Model RB have been successfully used by various international algorithm competitions and many research papers. In a previous work, Xu and Li defined two notions called i-constraint assignment tuple and flawed i-constraint assignment tuple to show an exponential resolution complexity of Model RB. These two notions are similar to some kind of consistency in constraint satisfaction problems, but seem different from all kinds of consistency so far known in literatures. In this paper, we explicitly define this kind of consistency, called variable-centered consistency, and show an upper bound on a parameter in Model RB, such that up to this bound the typical instances of Model RB are variable-centered consistent.  相似文献   

4.
一种基于变量熵求解约束满足问题的置信传播算法   总被引:1,自引:0,他引:1  
在置信传播(belief propagation,BP)算法中,提出一种基于变量熵来挑选变量从而固定变量赋值的策略,用于求解一类具有增长定义域的随机约束满足问题.RB模型是一个具有增长定义域的随机约束满足问题的典型代表,已经严格证明它不仅存在精确的可满足性相变现象,而且可以生成难解实例.在RB模型上选取两组不同的参数进行数值实验.结果表明:在接近可满足性相变点时,BP引导的消去算法仍然可以非常有效地找到随机实例的解;不断增加问题的规模,算法的运行时间呈指数级增长;并且当控制参数(约束紧度)增加时,变量的平均自由度逐渐降低.  相似文献   

5.
《Artificial Intelligence》2007,171(8-9):514-534
In this paper, we show that the models of random CSP instances proposed by Xu and Li [K. Xu, W. Li, Exact phase transitions in random constraint satisfaction problems, Journal of Artificial Intelligence Research 12 (2000) 93–103; K. Xu, W. Li, Many hard examples in exact phase transitions with application to generating hard satisfiable instances, Technical report, CoRR Report cs.CC/0302001, Revised version in Theoretical Computer Science 355 (2006) 291–302] are of theoretical and practical interest. Indeed, these models, called RB and RD, present several nice features. First, it is quite easy to generate random instances of any arity since no particular structure has to be integrated, or property enforced, in such instances. Then, the existence of an asymptotic phase transition can be guaranteed while applying a limited restriction on domain size and on constraint tightness. In that case, a threshold point can be precisely located and all instances have the guarantee to be hard at the threshold, i.e., to have an exponential tree-resolution complexity. Next, a formal analysis shows that it is possible to generate forced satisfiable instances whose hardness is similar to unforced satisfiable ones. This analysis is supported by some representative results taken from an intensive experimentation that we have carried out, using complete and incomplete search methods.  相似文献   

6.
Yong Gao 《Artificial Intelligence》2009,173(14):1343-1366
Data reduction is a key technique in the study of fixed parameter algorithms. In the AI literature, pruning techniques based on simple and efficient-to-implement reduction rules also play a crucial role in the success of many industrial-strength solvers. Understanding the effectiveness and the applicability of data reduction as a technique for designing heuristics for intractable problems has been one of the main motivations in studying the phase transition of randomly-generated instances of NP-complete problems.In this paper, we take the initiative to study the power of data reductions in the context of random instances of a generic intractable parameterized problem, the weighted d-CNF satisfiability problem. We propose a non-trivial random model for the problem and study the probabilistic behavior of the random instances from the model. We design an algorithm based on data reduction and other algorithmic techniques and prove that the algorithm solves the random instances with high probability and in fixed-parameter polynomial time O(dknm) where n is the number of variables, m is the number of clauses, and k is the fixed parameter. We establish the exact threshold of the phase transition of the solution probability and show that in some region of the problem space, unsatisfiable random instances of the problem have parametric resolution proof of fixed-parameter polynomial size. Also discussed is a more general random model and the generalization of the results to the model.  相似文献   

7.
The richness of the constraint satisfaction problem (or CSP) in representing combinatorial search maladies has resulted in a torrent of techniques for efficiently solving them. These techniques have focused on discovering better backtrack points, learning from dead-ends and avoiding repetitious interference, problem reduction method and the use of network heuristics. Much of this research has derived innovative methods for solving the CSP, however, the evaluations of the techniques have remained diverse and in many cases, statistically inaccurate.Another issue with regard to the performance measurement of constraint satisfaction techniques is the inability to model computational constraint processing cost. It is not uncommon to find evaluations that are based on CSPs that differ only on the percentage of constraints and the tightness of each constraint. This may be justifiable if it can be established that they are the only contributing factors of the performance variable. The three aspects mentioned above comprise this paper's main focus points. They come under the general headings of Modelling CSP Difficulty, Modelling Constraint Cost and Elucidating Major Performance Factors respectively. This paper seeks to provide a set of proposals with respect to the above three well-known areas so as collectively to enhance the robustness of evaluations conducted in the field of constraint satisfaction.  相似文献   

8.
We study the connection between the order of phase transitions in combinatorial problems and the complexity of decision algorithms for such problems. We rigorously show that, for a class of random constraint satisfaction problems, a limited connection between the two phenomena indeed exists. Specifically, we extend the definition of the spine order parameter of Bollobás et al. [10] to random constraint satisfaction problems, rigorously showing that for such problems a discontinuity of the spine is associated with a 2Ω(n) resolution complexity (and thus a 2Ω(n) complexity of DPLL algorithms) on random instances. The two phenomena have a common underlying cause: the emergence of “large” (linear size) minimally unsatisfiable subformulas of a random formula at the satisfiability phase transition.We present several further results that add weight to the intuition that random constraint satisfaction problems with a sharp threshold and a continuous spine are “qualitatively similar to random 2-SAT”. Finally, we argue that it is the spine rather than the backbone parameter whose continuity has implications for the decision complexity of combinatorial problems, and we provide experimental evidence that the two parameters can behave in a different manner.AMS subject classification 68Q25, 82B27  相似文献   

9.
Privacy preservation has recently received considerable attention in location-based services (LBSs). A large number of location cloaking algorithms have been proposed for protecting the location privacy of mobile users. However, most existing cloaking approaches assume that mobile users are trusted. And exact locations are required to protect location privacy, which is exactly the information mobile users want to hide. In this paper, we propose a p-anti-conspiration privacy model to anonymize over semi-honest users. Furthermore, two k*NNG-based cloaking algorithms, vk*NNCA and ek*NNCA, are proposed to protect location privacy without exact locations. The efficiency and effectiveness of the proposed algorithms are validated by a series of carefully designed experiments. The experimental results show that the price paid for location privacy protection without exact locations is small.  相似文献   

10.
Several sequential approximation algorithms for combinatorial optimization problems are based on the following paradigm: solve a linear or semidefinite programming relaxation, then use randomized rounding to convert fractional solutions of the relaxation into integer solutions for the original combinatorial problem. We demonstrate that such a paradigm can also yield parallel approximation algorithms by showing how to convert certain linear programming relaxations into essentially equivalent positive linear programming [LN] relaxations that can be near-optimally solved in NC. Building on this technique, and finding some new linear programming relaxations, we develop improved parallel approximation algorithms for Max Sat, Max Directed Cut, and Max k CSP. The Max Sat algorithm essentially matches the best approximation obtainable with sequential algorithms and has a fast sequential version. The Max k CSP algorithm improves even over previous sequential algorithms. We also show a connection between probabilistic proof checking and a restricted version of Max k CSP. This implies that our approximation algorithm for Max k CSP can be used to prove inclusion in P for certain PCP classes. Received November 1996; revised March 1997.  相似文献   

11.
D. A. Cohen 《Constraints》2004,9(3):219-229
A constraint satisfaction problem (CSP) instance has a set of variables, each of which can take values in some domain. It also has a set of constraints, each of which restricts the variables in its scope to take values limited by its constraint relation.The language of a constraint satisfaction problem instance is the set of different constraint relations used in its specification. For a given set of relations over some domain we define the problem CSP () to the set of CSP instances whose language is contained in .The decision problem for a set of CSP instances is, given an instance in the class, to decide whether a solution exists. The search problem is to find such a solution. Here we address the connection between the tractability of the decision and search problems. We prove that given a constraint language over a finite domain for which the decision problem for CSP () is tractable, the search problem is always tractable.We define a surjective language over a finite domain in a standard way. We also show that we can determine in polynomial time whether an instance over a surjective language with a tractable decision problem has fewer than k solutions, and that we can generate all of its solutions with polynomial delay.  相似文献   

12.
Many real problems can be naturally modelled as constraint satisfaction problems (CSPs). However, some of these problems are of a distributed nature, which requires problems of this kind to be modelled as distributed constraint satisfaction problems (DCSPs). In this work, we present a distributed model for solving CSPs. Our technique carries out a partition over the constraint network using a graph partitioning software; after partitioning, each sub-CSP is arranged into a DFS-tree CSP structure that is used as a hierarchy of communication by our distributed algorithm. We show that our distributed algorithm outperforms well-known centralized algorithms solving partitionable CSPs.  相似文献   

13.
随机约束满足问题是经典的NP完全问题,在理论研究和现实生活中有着广泛应用。研究人员发现随机约束满足问题存在相变现象,近几十年来关于此问题相变的研究成果不断涌现。从随机图着色问题和随机可满足问题2个最经典的随机约束满足问题入手,从算法研究、理论物理和数学证明3个方面综述了随机图着色问题和随机可满足问题的相变研究成果。最后对随机约束满足问题相变的研究趋势进行了展望。  相似文献   

14.
We consider a random constraint satisfaction problem named model RB, which exhibits a sharp satisfiability phase-transition phenomenon when the control parameters pass through the critical values denoted by rcr and pcr. Using finite-size scaling analysis, we bound the width of the transition region for finite problem size n, which might be the first rigorous study on the threshold behaviors of NP-complete problems.  相似文献   

15.
If we have two representations of a problem as constraint satisfaction problem (CSP) models, it has been shown that combining the models using channeling constraints can increase constraint propagation in tree search CSP solvers. Handcrafting two CSP models for a problem, however, is often time-consuming. In this paper, we propose model induction, a process which generates a second CSP model from an existing model using channeling constraints, and study its theoretical properties. The generated induced model is in a different viewpoint, i.e., set of variables. It is mutually redundant to and can be combined with the input model, so that the combined model contains more redundant information, which is useful to increase constraint propagation. We also propose two methods of combining CSP models, namely model intersection and model channeling. The two methods allow combining two mutually redundant models in the same and different viewpoints respectively. We exploit the applications of model induction, intersection, and channeling and identify three new classes of combined models, which contain different amounts of redundant information. We construct combined models of permutation CSPs and show in extensive benchmark results that the combined models are more robust and efficient to solve than the single models.  相似文献   

16.
GRB模型是一种随机约束满足问题模型,此模型具有精确的可满足相变现象。针对实验中出现的GRB模型在相变区域产生的可满足实例都是难解的现象,利用子句宽度和归结复杂度的关系证明了GRB模型在相变点附近产生的可满足实例对于树型归结证明具有指数下界。因此从理论上证明了在相变区域产生的可满足实例对基于归结的算法是难解的。  相似文献   

17.
随机约束满足问题的回溯算法分析   总被引:5,自引:0,他引:5  
许可  李未 《软件学报》2000,11(11):1467-1471
提出一种新的随机CSP(constraint sa tisfaction problem)模型,并且通过研究搜索树的平均节点数,分析了回溯算法求解该模型 的平均复杂性.结果表明,这种模型能够生成难解的CSP实例,找到所有的解或证明无解所需的 平均节点数即随变量数的增加而指数增长.因此,该模型可以用来研究难解实例的性质和CSP 算法的性能等问题,从而有助于设计出更为高效的算法.  相似文献   

18.
The study of broken-triangles is becoming increasingly ambitious, by both solving constraint satisfaction problems (CSPs) in polynomial time and reducing search space size through either value merging or variable elimination. Considerable progress has been made in extending this important concept, such as dual broken-triangle and weakly broken-triangle, in order to maximize the number of captured tractable CSP instances and/or the number of merged values. Specifically, m-wBTP allows us to merge more values than BTP. DBTP, ??-BTP, k-BTP, WBTP and m-wBTP permit us to capture more tractable instances than BTP. However, except BTP, none of these extensions allows variable elimination while preserving satisfiability. Moreover, k-BTP and m-wBTP define bigger tractable classes around BTP but both of them generally need a high level of consistency. Here, we introduce a new weaker form of BTP, called m-fBTP for flexible broken-triangle property, which will represent a compromise between most of these previous tractable properties based on BTP. m-fBTP allows us on the one hand to eliminate more variables than BTP while preserving satisfiability and on the other to define a new bigger tractable class for which arc consistency is a decision procedure. Likewise, m-fBTP permits to merge more values than BTP but fewer than m-wBTP. The binary CSP instances satisfying m-fBTP are solved by algorithms of the state-of-the-art like MAC and RFL in polynomial time. An open question is whether it is possible to compute, in polynomial time, the existence of some variable ordering for which a given instance satisfies m-fBTP.  相似文献   

19.
In the maximum constraint satisfaction problem (Max CSP), one is given a finite collection of positive-weight constraints on overlapping sets of variables, and the goal is to assign values from a given domain to the variables so that the total weight of satisfied constraints is maximized. We consider this problem and its variant Max AW CSP where the weights are allowed to be both positive and negative, and study how the complexity of the problems depends on the allowed constraint types. We prove that Max AW CSP over an arbitrary finite domain exhibits a dichotomy: it is either polynomial-time solvable or NP-hard. Our proof builds on two results that may be of independent interest: one is that the problem of finding a maximum H-colourable subdigraph in a given digraph is either NP-hard or trivial depending on H, and the other a dichotomy result for Max CSP with a single allowed constraint type.  相似文献   

20.
We study the computational complexity of auditing finite attributes in databases allowing statistical queries. Given a database that supports statistical queries, the auditing problem is to check whether an attribute can be completely determined or not from a given set of statistical information. Some restricted cases of this problem have been investigated earlier, e.g. the complexity of statistical sum queries is known by the work of Kleinberg et al. (J. Comput. System Sci. 66 (2003) 244–253). We characterize all classes of statistical queries such that the auditing problem is polynomial-time solvable. We also prove that the problem is coNP-complete in all other cases under a plausible conjecture on the complexity of constraint satisfaction problems (CSP). The characterization is based on the complexity of certain CSP problems; the exact complexity for such problems is known in many cases. This result is obtained by exploiting connections between auditing and constraint satisfaction, and using certain algebraic techniques. We also study a generalization of the auditing problem where one asks if a set of statistical information imply that an attribute is restricted to K or less different values. We characterize all classes of polynomial-time solvable problems in this case, too.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号