首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 736 毫秒
1.
In this paper, we suggested and studied the inverse length biased Maxell distribution (ILBMD) as a new continuous distribution of one parameter. The ILBMD is obtained by considering the inverse transformation technique of the Maxwell length biased distribution. Statistical characteristics of the ILBMD such as the moments, moment generating function, mode, quantile function, the coefficient of variation, coefficient of skewness, Moors and Bowley measures of kurtosis and skewness , stochastic ordering, stress-strength reliability, and mean deviations are obtained. In addition, the Bonferroni and Lorenz curves, Gini index, the reliability function, the hazard rate function, the reverse hazard rate function, the odds function, and the distributions of order statistics for the ILBMD, are presented. The ILBMD parameter is estimated using the maximum likelihood method, the method of moments, the maximum product of spacing technique, the ordinary and weight least square procedures, and the Cramer-Von-Mises methods. The Fishers information, as well as the Rényi and q-entropies, are derived. To investigate the usefulness of the proposed lifetime distribution and to illustrate the purpose of the study, a real dataset of the relief times of 20 patients receiving an analgesic is used.  相似文献   

2.
The bivariate distributions are useful in simultaneous modeling of two random variables. These distributions provide a way to model models. The bivariate families of distributions are not much widely explored and in this article a new family of bivariate distributions is proposed. The new family will extend the univariate transmuted family of distributions and will be helpful in modeling complex joint phenomenon. Statistical properties of the new family of distributions are explored which include marginal and conditional distributions, conditional moments, product and ratio moments, bivariate reliability and bivariate hazard rate functions. The maximum likelihood estimation (MLE) for parameters of the family is also carried out. The proposed bivariate family of distributions is studied for the Weibull baseline distributions giving rise to bivariate transmuted Weibull (BTW) distribution. The new bivariate transmuted Weibull distribution is explored in detail. Statistical properties of the new BTW distribution are studied which include the marginal and conditional distributions, product, ratio and conditional momenst. The hazard rate function of the BTW distribution is obtained. Parameter estimation of the BTW distribution is also done. Finally, real data application of the BTW distribution is given. It is observed that the proposed BTW distribution is a suitable fit for the data used.  相似文献   

3.
In this paper we introduce the Weibull power series (WPS) class of distributions which is obtained by compounding Weibull and power series distributions, where the compounding procedure follows same way that was previously carried out by Adamidis and Loukas (1998). This new class of distributions has as a particular case the two-parameter exponential power series (EPS) class of distributions (Chahkandi and Ganjali, 2009), which contains several lifetime models such as: exponential geometric (Adamidis and Loukas, 1998), exponential Poisson (Kus, 2007) and exponential logarithmic (Tahmasbi and Rezaei, 2008) distributions. The hazard function of our class can be increasing, decreasing and upside down bathtub shaped, among others, while the hazard function of an EPS distribution is only decreasing. We obtain several properties of the WPS distributions such as moments, order statistics, estimation by maximum likelihood and inference for a large sample. Furthermore, the EM algorithm is also used to determine the maximum likelihood estimates of the parameters and we discuss maximum entropy characterizations under suitable constraints. Special distributions are studied in some detail. Applications to two real data sets are given to show the flexibility and potentiality of the new class of distributions.  相似文献   

4.
The statistical models and methods for lifetime data mainly deal with continuous nonnegative lifetime distributions. However, discrete lifetimes arise in various common situations where either the clock time is not the best scale for measuring lifetime or the lifetime is measured discretely. In most settings involving lifetime data, the population under study is not homogenous. Mixture models, in particular mixtures of discrete distributions, provide a natural answer to this problem. Nonparametric mixtures of power series distributions are considered, as for instance nonparametric mixtures of Poisson laws or nonparametric mixtures of geometric laws. The mixing distribution is estimated by nonparametric maximum likelihood (NPML). Next, the NPML estimator is used to build estimates and confidence intervals for the hazard rate function of the discrete lifetime distribution. To improve the performance of the confidence intervals, a bootstrap procedure is considered where the estimated mixture is used for resampling. Various bootstrap confidence intervals are investigated and compared to the confidence intervals obtained directly from the NPML estimates.  相似文献   

5.
The two-parameter linear failure rate distribution has been used quite successfully to analyze lifetime data. Recently, a new three-parameter distribution, known as the generalized linear failure rate distribution, has been introduced by exponentiating the linear failure rate distribution. The generalized linear failure rate distribution is a very flexible lifetime distribution, and the probability density function of the generalized linear failure rate distribution can take different shapes. Its hazard function also can be increasing, decreasing and bathtub shaped. The main aim of this paper is to introduce a bivariate generalized linear failure rate distribution, whose marginals are generalized linear failure rate distributions. It is obtained using the same approach as was adopted to obtain the Marshall-Olkin bivariate exponential distribution. Different properties of this new distribution are established. The bivariate generalized linear failure rate distribution has five parameters and the maximum likelihood estimators are obtained using the EM algorithm. A data set is analyzed for illustrative purposes. Finally, some generalizations to the multivariate case are proposed.  相似文献   

6.
In this paper we propose a new four-parameters distribution with increasing, decreasing, bathtub-shaped and unimodal failure rate, called as the exponentiated Weibull–Poisson (EWP) distribution. The new distribution arises on a latent complementary risk problem base and is obtained by compounding exponentiated Weibull (EW) and Poisson distributions. This distribution contains several lifetime sub-models such as: generalized exponential-Poisson (GEP), complementary Weibull–Poisson (CWP), complementary exponential-Poisson (CEP), exponentiated Rayleigh–Poisson (ERP) and Rayleigh–Poisson (RP) distributions.We obtain several properties of the new distribution such as its probability density function, its reliability and failure rate functions, quantiles and moments. The maximum likelihood estimation procedure via an EM-algorithm is presented in this paper. Sub-models of the EWP distribution are studied in details. In the end, applications to two real data sets are given to show the flexibility and potentiality of the new distribution.  相似文献   

7.
In this paper, we proposed a new two-parameter lifetime distribution with increasing failure rate, the complementary exponential geometric distribution, which is complementary to the exponential geometric model proposed by Adamidis and Loukas (1998). The new distribution arises on a latent complementary risks scenario, in which the lifetime associated with a particular risk is not observable; rather, we observe only the maximum lifetime value among all risks. The properties of the proposed distribution are discussed, including a formal proof of its probability density function and explicit algebraic formulas for its reliability and failure rate functions, moments, including the mean and variance, variation coefficient, and modal value. The parameter estimation is based on the usual maximum likelihood approach. We report the results of a misspecification simulation study performed in order to assess the extent of misspecification errors when testing the exponential geometric distribution against our complementary one in the presence of different sample size and censoring percentage. The methodology is illustrated on four real datasets; we also make a comparison between both modeling approaches.  相似文献   

8.
Bootstrap confidence intervals for the mode of the hazard function   总被引:1,自引:0,他引:1  
In many applications of lifetime data analysis, it is important to perform inferences about the mode of the hazard function in situations of lifetime data modeling with unimodal hazard functions. For lifetime distributions where the mode of the hazard function can be analytically calculated, its maximum likelihood estimator is easily obtained from the invariance properties of the maximum likelihood estimators. From the asymptotical normality of the maximum likelihood estimators, confidence intervals can be obtained. However, these results might not be very accurate for small sample sizes and/or large proportion of censored observations. Considering the log-logistic distribution for the lifetime data with shape parameter beta>1, we present and compare the accuracy of asymptotical confidence intervals with two confidence intervals based on bootstrap simulation. The alternative methodology of confidence intervals for the mode of the log-logistic hazard function are illustrated in three numerical examples.  相似文献   

9.
A new three-parameter exponential-type family of distributions which can be used in modeling survival data, reliability problems and fatigue life studies is introduced. Its failure rate function can be constant, decreasing, increasing, upside-down bathtub or bathtub-shaped depending on its parameters. It includes as special sub-models the exponential distribution, the generalized exponential distribution [Gupta, R.D., Kundu, D., 1999. Generalized exponential distributions. Australian and New Zealand Journal of Statistics 41, 173–188] and the extended exponential distribution [Nadarajah, S., Haghighi, F., 2011. An extension of the exponential distribution. Statistics 45, 543–558]. A comprehensive account of the mathematical properties of the new family of distributions is provided. Maximum likelihood estimation of the unknown parameters of the new model for complete sample as well as for censored sample is discussed. Estimation of the stress–strength parameter is also considered. Two empirical applications of the new model to real data are presented for illustrative purposes.  相似文献   

10.
基于谱分析与模块度,提出一种无线传感器网络分簇算法(CHSM).首先利用非平凡特征向量获得传感器网络的原始簇结构;然后借助模块度的增量来评估、合并原始簇,从而形成一个与真实网络相匹配的簇结构;同时设计了一种能量异配度函数,并利用各节点的能量异配度及其剩余能量在各个簇内选取簇头节点.仿真结果表明,CHSM算法找到的簇结构具有更高的模块度,其选取的簇头节点具有更高的能量异配度,进而表明了所提出的算法能有效延长网络的寿命.  相似文献   

11.
Probability distributions have been in use for modeling of random phenomenon in various areas of life. Generalization of probability distributions has been the area of interest of several authors in the recent years. Several situations arise where joint modeling of two random phenomenon is required. In such cases the bivariate distributions are needed. Development of the bivariate distributions necessitates certain conditions, in a field where few work has been performed. This paper deals with a bivariate beta-inverse Weibull distribution. The marginal and conditional distributions from the proposed distribution have been obtained. Expansions for the joint and conditional density functions for the proposed distribution have been obtained. The properties, including product, marginal and conditional moments, joint moment generating function and joint hazard rate function of the proposed bivariate distribution have been studied. Numerical study for the dependence function has been implemented to see the effect of various parameters on the dependence of variables. Estimation of the parameters of the proposed bivariate distribution has been done by using the maximum likelihood method of estimation. Simulation and real data application of the distribution are presented.  相似文献   

12.
A four parameter generalization of the Weibull distribution capable of modeling a bathtub-shaped hazard rate function is defined and studied. The beauty and importance of this distribution lies in its ability to model monotone as well as non-monotone failure rates, which are quite common in lifetime problems and reliability. The new distribution has a number of well-known lifetime special sub-models, such as the Weibull, extreme value, exponentiated Weibull, generalized Rayleigh and modified Weibull distributions, among others. We derive two infinite sum representations for its moments. The density of the order statistics is obtained. The method of maximum likelihood is used for estimating the model parameters. Also, the observed information matrix is obtained. Two applications are presented to illustrate the proposed distribution.  相似文献   

13.
A four parameter generalization of the Weibull distribution capable of modeling a bathtub-shaped hazard rate function is defined and studied. The beauty and importance of this distribution lies in its ability to model monotone as well as non-monotone failure rates, which are quite common in lifetime problems and reliability. The new distribution has a number of well-known lifetime special sub-models, such as the Weibull, extreme value, exponentiated Weibull, generalized Rayleigh and modified Weibull distributions, among others. We derive two infinite sum representations for its moments. The density of the order statistics is obtained. The method of maximum likelihood is used for estimating the model parameters. Also, the observed information matrix is obtained. Two applications are presented to illustrate the proposed distribution.  相似文献   

14.
15.
In this paper we proposed a new two-parameters lifetime distribution with increasing failure rate. The new distribution arises on a latent complementary risk problem base. The properties of the proposed distribution are discussed, including a formal proof of its probability density function and explicit algebraic formulae for its reliability and failure rate functions, quantiles and moments, including the mean and variance. A simple EM-type algorithm for iteratively computing maximum likelihood estimates is presented. The Fisher information matrix is derived analytically in order to obtaining the asymptotic covariance matrix. The methodology is illustrated on a real data set.  相似文献   

16.
A bathtub-shaped failure rate function is very useful in survival analysis and reliability studies. The well-known lifetime distributions do not have this property. For the first time, we propose a location-scale regression model based on the logarithm of an extended Weibull distribution which has the ability to deal with bathtub-shaped failure rate functions. We use the method of maximum likelihood to estimate the model parameters and some inferential procedures are presented. We reanalyze a real data set under the new model and the log-modified Weibull regression model. We perform a model check based on martingale-type residuals and generated envelopes and the statistics AIC and BIC to select appropriate models.  相似文献   

17.
Since multivariate lifetime data frequently occur in applications, various properties of multivariate distributions have been previously considered to model and describe the main concepts of aging commonly considered in the univariate setting. The generalization of univariate aging notions to the multivariate case involves, among other factors, appropriate definitions of multivariate quantiles and related notions, which are able to correctly describe the intrinsic characteristics of the concepts of aging that should be generalized, and which provide useful tools in the applications. A new multivariate version of the well-known New Better than Used in Expectation univariate aging notion is provided, by means of the concepts of the upper corrected orthant and multivariate excess-wealth function. Some of its properties are described, with particular attention paid to those that can be useful in the analysis of real data sets. Finally, through an example it is illustrated how the new multivariate aging notion influences the final results in the analysis of data on tumor growth from the Comprehensive Cohort Study performed by the German Breast Cancer Study Group.  相似文献   

18.
For the first time, a five-parameter distribution, the so-called beta Burr XII distribution, is defined and investigated. The new distribution contains as special sub-models some well-known distributions discussed in the literature, such as the logistic, Weibull and Burr XII distributions, among several others. We derive its moment generating function. We obtain, as a special case, the moment generating function of the Burr XII distribution, which seems to be a new result. Moments, mean deviations, Bonferroni and Lorenz curves and reliability are provided. We derive two representations for the moments of the order statistics. The method of maximum likelihood and a Bayesian analysis are proposed for estimating the model parameters. The observed information matrix is obtained. For different parameter settings and sample sizes, various simulation studies are performed and compared in order to study the performance of the new distribution. An application to real data demonstrates that the new distribution can provide a better fit than other classical models. We hope that this generalization may attract wider applications in reliability, biology and lifetime data analysis.  相似文献   

19.
A parametric regression model for right-censored data with a log-linear median regression function and a transformation in both response and regression parts, named parametric Transform-Both-Sides (TBS) model, is presented. The TBS model has a parameter that handles data asymmetry while allowing various different distributions for the error, as long as they are unimodal symmetric distributions centered at zero. The discussion is focused on the estimation procedure with five important error distributions (normal, double-exponential, Student’s t, Cauchy and logistic) and presents properties, associated functions (that is, survival and hazard functions) and estimation methods based on maximum likelihood and on the Bayesian paradigm. These procedures are implemented in TBSSurvival, an open-source fully documented R package. The use of the package is illustrated and the performance of the model is analyzed using both simulated and real data sets.  相似文献   

20.
In this paper, we consider a family of generalized Birnbaum-Saunders distributions and present a lifetime analysis based mainly on the hazard function of this model. In addition, we carry out maximum likelihood estimation by using an iterative algorithm, which produces robust estimates. Asymptotic inference is also presented. Next, the quality of the estimation method is examined by means of Monte Carlo simulations. We then provide a practical example to illustrate the obtained results. From this example and based on goodness-of-fit methods, we show that the GBS distribution results in a more appropriate model for modeling fatigue data than other models commonly used to model this type of data. Finally, we estimate the hazard function and the critical point of this function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号