首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Time‐delay systems described by coupled differential‐functional equations include as special cases many types of time‐delay systems and coupled differential‐difference systems with time delays. This article discusses the discretized Lyapunov–Krasovskii functional (LKF) method for the stability problem of coupled differential‐difference equations with multiple discrete and distributed delays. Through independently dividing every delay region that the plane regions consists in two delays to discretize LKF, the exponential stability conditions for coupled systems with multiple discrete and distributed delays are established based on a linear matrix inequality (LMI). The numerical examples show that the analysis limit of delay bound in which the systems are stable may be approached by our result. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we consider delay-dependent stability conditions of Takagi-Sugeno fuzzy systems with discrete and distributed delays. Although many kinds of stability conditions for fuzzy systems with discrete delays have already been obtained, almost no stability condition for fuzzy systems with distributed delays has appeared in the literature. This is also true in case of the robust stability for uncertain fuzzy systems with distributed delays. Here we employ a generalized Lyapunov functional to obtain delay-dependent stability conditions of fuzzy systems with discrete and distributed delays. We introduce some free weighting matrices to such a Lyapunov functional in order to reduce the conservatism in stability conditions. These techniques lead to generalized and less conservative stability conditions. We also consider the robust stability of fuzzy time-delay systems with uncertain parameters. Applying the same techniques made on the stability conditions, we obtain delay-dependent sufficient conditions for the robust stability of uncertain fuzzy systems with discrete and distributed delays. Moreover, we consider the state feedback stabilization. Based on stability and robust stability conditions, we obtain conditions for the state feedback controller to stabilize the fuzzy time-delay systems. Finally, we give two examples to illustrate our results. Delay-dependent stability conditions obtained here are shown to guarantee a wide stability region.  相似文献   

3.
In this paper, we consider some classes of linear continuous time difference systems with discrete and distributed delays. For these infinite-dimensional systems, we derive new sufficient delay-dependent conditions for the exponential stability and exponential estimates for the solutions by using Lyapunov–Krasovskii functionals.  相似文献   

4.
This paper is concerned with analysis problem for the global exponential stability of the Cohen–Grossberg neural networks with discrete delays and with distributed delays. We first prove the existence and uniqueness of the equilibrium point under mild conditions, assuming neither differentiability nor strict monotonicity for the activation function. Then, we employ Lyapunov functions to establish some sufficient conditions ensuring global exponential stability of equilibria for the Cohen–Grossberg neural networks with discrete delays and with distributed delays. Our results are not only presented in terms of system parameters and can be easily verified and also less restrictive than previously known criteria. A comparison between our results and the previous results admits that our results establish a new set of stability criteria for delayed neural networks.  相似文献   

5.
6.
7.
This paper studies the exponential stability problems of discrete‐time and continuous‐time impulsive positive switched systems with mixed (discrete and distributed) time‐varying delays, respectively. By constructing novel copositive Lyapunov‐Krasovskii functionals and using the average dwell time technique, delay‐dependent sufficient conditions for the solvability of considered problems are given in terms of fairly simple linear matrix inequalities. Compared with the most existing results, by introducing an extra real vector, restrictive conditions on derivative of the time‐varying delays (less than 1) are relaxed, thus the obtained improved stability criteria can deal with a wider class of continuous‐time positive switched systems with time‐varying delays. Finally, two simple examples are provided to verify the validity of theoretical results.  相似文献   

8.
This article deals with the H control problem for a class of switched non-linear systems with mixed time-varying delays. The novel features here are that the system in consideration is non-linear perturbation with discrete and distributed delays, the time-varying delay is also involved in the observation output, and the controllers to be designed satisfy some exponential stability constraints on the closed-loop poles. By using Lyapunov–Razumikhin functional approach, new sufficient conditions for the H control with exponential stability constraint are derived in terms of the solution of Riccati-type equations. The approach allows for simultaneous computation of the two bounds that characterise the stability rate of the solution.  相似文献   

9.
This paper considers the impulsive control of unstable neural networks with unbounded time-varying delays, where the time delays to be addressed include the unbounded discrete time-varying delay and unbounded distributed time-varying delay. By employing impulsive control theory and some analysis techniques, several sufficient conditions ensuring μ-stability, including uniform stability, (global) asymptotical stability, and (global) exponential stability, are derived. It is shown that an unstable delay neural network, especially for the case of unbounded time-varying delays, can be stabilized and has μ-stability via proper impulsive control strategies. Three numerical examples and their simulations are presented to demonstrate the effectiveness of the control strategy.  相似文献   

10.
This article mainly investigates the quasi-uniform stability of fractional-order neural networks with time discrete and distributed delays (FONNDDDs). First, a novel fractional-order Gronwall inequality with discrete and distributed delays (FOGIDDDs) is established; it can be used to study the stability of a variety of fractional-order systems with discrete and distributed delays (FOSDDDs). Second, on the basis of this inequality and Leray-Schauder alternative theorem, the existence and uniqueness results for the FONNDDDs are proved. Third, an improved criterion for the quasi-uniform stability of FONNDDDs is obtained in terms of this inequality. Ultimately, one numerical example is provided to expound the effectiveness and the superiority of the proposed result.  相似文献   

11.
针对一类同时具有分布时滞和维纳过程的随机偏微分系统, 首先基于It?o微分公式, 通过计算弱无穷小算 子, 得到了随机微分导数; 其次利用Green公式和积分不等式及Schur补引理对矩阵不等式进行处理; 然后对微分两 边积分并同时取数学期望处理随机交叉项; 获得了分布时滞随机偏微分系统是均方指数稳定的充分条件. 在此基础 上, 进一步考虑了离散变时滞和分布变时滞在一定约束情形下的分布时滞随机偏微分系统的均方指数稳定性问题. 最后给出仿真实例, 仿真结果表明所获得的线性矩阵不等式条件保证了系统的稳定性, 验证了所得结论的有效性.  相似文献   

12.
针对一类含有离散和分布时延神经网络,在神经激活函数较弱的约束条件下,通过定义一个更具一般性的Lyapunov泛函,使用凸组合技术,得到了新的基于线性矩阵不等式表示的指数稳定性判据.与现有结果相比,这些判据具有较小的保守性.仿真算例表明,得到的结果是有效的且保守性小.  相似文献   

13.
时滞随机关联系统的群稳定性   总被引:1,自引:0,他引:1  
施继忠  张继业  徐晓惠 《自动化学报》2010,36(12):1744-1751
在假定激励是参数白噪声的前提下, 基于箱体理论, 研究了无限维时滞随机关联系统中各子系统的内部联系. 利用向量Lyapunov 函数法, 研究了无限维时滞随机关联系统的群稳定性, 分别得到了无限维时滞非线性复合随机系统、无限维时滞弱耦合随机系统, 以及无限维时滞车辆跟随随机系统指数群稳定性的充分条件. 最后给出一个算例, 用以说明定理在实际中便于应用.  相似文献   

14.
In this paper, a robust adaptive control scheme is proposed for the stabilization of uncertain linear systems with discrete and distributed delays and bounded perturbations. The uncertainty is assumed to be an unknown continuous function with norm-bounded restriction. The perturbation is sector-bounded. Combining with the liner matrix inequality method, neural networks and adaptive control, the control scheme ensures the exponential stability of the closed-loop system for any admissible uncertainty.  相似文献   

15.
In the present paper, sufficient conditions for the exponential stability of linear systems with infinite distributed delays are presented. Such systems arise in population dynamics, in traffic flow models, in networked control systems, in PID controller design and in other engineering problems. In the early Lyapunov-based analysis of systems with distributed delays (Kolmanovskii & Myshkis, 1999), the delayed terms were treated as perturbations, where it was assumed that the system without the delayed term is asymptotically stable. Later, for the case of constant kernels and finite delays, less conservative conditions were derived under the assumption that the corresponding system with the zero-delay is stable (Chen & Zheng, 2007). We will generalize these results to the infinite delay case by extending the corresponding Jensen’s integral inequalities and Lyapunov–Krasovskii constructions. Our main challenge is the stability conditions for systems with gamma-distributed delays, where the delay is stabilizing, i.e. the corresponding system with the zero-delay as well as the system without the delayed term are not asymptotically stable. Here the results are derived by using augmented Lyapunov functionals. Polytopic uncertainties in the system matrices can be easily included in the analysis. Numerical examples illustrate the efficiency of the method. Thus, for the traffic flow model on the ring, where the delay is stabilizing, the resulting stability region is close to the theoretical one found in Michiels, Morarescu, and Niculescu (2009) via the frequency domain analysis.  相似文献   

16.
This paper is concerned with the exponential stability analysis problem for a class of neutral bidirectional associative memory neural networks with mixed time-delays, where discrete, distributed and neutral delays are involved. By utilizing the delay decomposition approach and an appropriately constructed Lyapunov–Krasovskii functional, some novel delay-dependent and decay rate-dependent criteria for the exponential stability of the considered neural networks are derived and presented in terms of linear matrix inequalities. Furthermore, the maximum allowable decay rate can be estimated based on the obtained results. Three numerical examples are given to demonstrate the effectiveness of the proposed method.  相似文献   

17.
This paper considers interconnected retarded nonlinear systems. Integral input-to-state stable subsystems and the construction of Lyapunov-Krasovskii functionals for their interconnections are focused on. Both discrete and distributed time-delays in the subsystems and the communication channels are covered. This paper provides a sufficient small-gain type condition for the stability of the interconnected systems with respect to external inputs in the framework of Lyapunov-Krasovskii functionals. Global asymptotic stability is addressed as a special case which deals with time-varying delays in communication channels effectively.  相似文献   

18.
This paper deals with the global exponential stability in Lagrange sense for quaternion-valued neural networks (QVNNs) with leakage delay, discrete time-varying delays and distributed delays. By structuring an advisable Lyapunov–Krasovskii functional in quaternion field, and adopting free-weighting-matrix method and inequality technique, a sufficient condition in quaternion-valued linear matrix inequality (LMI) to guarantee the global exponential stability in Lagrange sense is acquired, and the domain of attraction is estimated. A numerical example with simulations is supplied to confirm the availability and feasibility of the raised result.  相似文献   

19.
This paper is concerned with the mean-square exponential stability problem for a class of impulsive stochastic systems with delayed impulses. The delays exhibit in both continuous subsystem and discrete subsystem. By constructing piecewise time-varying Lyapunov functions and Razumikhin technique, sufficient conditions are derived which guarantee the mean-square exponential stability for impulsive stochastic delay system. It is shown that the obtained stability conditions depend both on the lower bound and the upper bound of impulsive intervals, and the stability of system is robust with regard to sufficiently small impulse input delays. Finally, two examples are proposed to verify the efficiency of the proposed results.  相似文献   

20.
In this paper, the problem of exponential stability criteria for neural networks with discrete and distributed time-varying delays are considered. By dividing the discrete delay interval into multiple segments and choosing a new class of Lyapunov functional which contains tripe-integral terms, some new delay-dependent stability criteria are derived in terms of linear matrix inequalities. The obtained criteria are less conservative because free-weighting matrices method and a convex optimization approach are considered. Finally, numerical examples are given to illustrate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号