首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
中纬度干旱半干旱草原是我国的主要地表类型之一,正在面临着严重的荒漠化问题。选择浑善达克沙地东部为研究地区,利用Landsat TM和ETM+资料对该地区的植被覆盖情况进行分析。在所选的4个年度中,以1996年的NDVI值为最高(0.67),1998年略次之(0.65),1987年居中(0.47),而2001年为最低,仅0.33。水分是决定干旱半干旱地区植被生长状况的关键因子。无论是年降水还是7、8月降水,与9月的NDVI都基本上呈现了一种线性关系。气温对NDVI的影响不明显。反映地表与植物冠层表面温度的热红外亮温经常与区域内的NDVI分布基本呈反相关。少数地区,特别是一些本身植被状况较差、生态相对更为脆弱的地区,植被遭到破坏后,即使在保证降水增加的情况下也不能在短时间内恢复。比较1996和1998年,荒漠化面积增长呈现出明显的上升趋势。2001年是严重干旱年,区域平均NDVI极低,但却有7.5%的地区出现NDVI增加。这一逆向变化可能与中央和地方政府于2000年启动的一系列沙源治理项目和禁牧规定有直接关系。由此说明,除了降水这一关键自然因子之外,人类活动也对干旱半干旱草原生态的恶化或恢复起着非常重要的作用。  相似文献   

2.
利用2001~2010年10 a的MODIS资料,比较分析广西喀斯特不同等级石漠化区MODIS\|NDVI和MODIS\|EVI的时间变化特征差异,利用全时间序列及16 d10 a均值序列分析NDVI和EVI之间的相关关系,比较线性及对数相关模型对两种植被指数相关关系的拟合效果,结果表明:石漠化等级由重度到潜在,两者之间的差值也随着植被覆盖度的增加而增大,植被覆盖度越低,NDVI和EVI所表征的植被变化特征越相似。NDVI的峰值出现时间多晚于EVI且其反映的植被变化趋势与实况更吻合,但其NDVI偏高;各等级石漠化的两种时间序列NDVI与EVI的对数相关关系优于线性相关,两种植被指数的相关性随着植被覆盖度的降低而增大,但全时间序列中轻度、中度石漠化相关性变化规律与16 d 10 a均值序列相反。  相似文献   

3.
An increased understanding of the responses of forest phenology to climate on regional scales is critical to the evaluation of biochemical cycles (i.e. carbon, water, heat, and nutrient) under environmental changes. In this study, we aimed to identify climatic constraints on phenological events in an evergreen coniferous forest in semi-arid mountain regions of northern China. We quantified the start of season (SOS), end of season (EOS), and growing season length (GSL) based on satellite-derived data sets (normalized difference vegetation index (NDVI)) and investigated the relationships between these phenological events and climate factors. The results revealed discontinuous trends in phenological events throughout the study period, with neither an obvious extension nor decrement in GSL. We demonstrated that minimum temperatures controlled the dynamics of SOS and EOS, thus providing strong evidence for the need to include minimum temperature as a control on phenology in simulation models. Additionally, precipitation was coupled to the shift in maximum NDVI, as rainfall is a major climatic limitation to vegetation growth in semi-arid regions. It appears that selecting appropriate timescales to analyse the relationships between phenology and climate is critical. We illustrated that NDVI was an effective tool in an effort to gain greater understanding of the effects of environmental change on ecosystem functioning in this forest. Our results may be used as reference to track local changes in the evergreen coniferous forest dynamics under different climate change scenarios for semi-arid mountain regions.  相似文献   

4.
ABSTRACT

Normalized difference vegetation index (NDVI) has been used to conduct important research on plant growth and vegetation productivity. In this paper, a new approach to predict NDVI based on precipitation in the grass-growing season for the arid and semi-arid grassland is proposed using time-delay neural network (TDNN). To intuitively know the ability of TDNN to learn the relationship between NDVI and precipitation and to predict NDVI, the performance of the TDNN model is compared with back propagation neural network (BPNN) trained with the same data. The results indicate that TDNN works well to predict precipitation. Moreover, the relationship between precipitation and NDVI can be predicted accurately by the proposed TDNN model. The results show the goodness-of-fit between the observed NDVI and predicted NDVI measured by the determination coefficient of R2 being 0.999 from the TDNN model, with the mean absolute percentage error, mean absolute error, and root-mean-square error to be 0.23%, 0.20, and 0.19, respectively. The analysis shows that the proposed method can result in an accurate NDVI prediction. Thus, the algorithm is applied to predict the NDVI during the grass-growing season for the validation of the approach. This validation results suggest the potential application of this approach for reduction of overgrazing pressure and vegetation restoration in the arid and semi-arid grassland.  相似文献   

5.
In semi-arid African regions (annual rainfall between 200 and 600 mm), variability of vegetative activity is mainly due to the rainfall of the current rainy season. In most of South Africa, the rainy season occurs from October to March. On average, vegetative activity lags rainfall by 1 to 2 months. The interannual variability in early summer (December to September) normalized difference vegetation index (NDVI) depends primarily on precipitation at the beginning (October to November) of the rainy season. However, once this primary control is removed, the residual interannual variability in NDVI highlights a double memory effect: a 1-year effect, referred to as Mem1, and a 7- to 10-month effect, referred to as Mem2. This article aims at better describing the influence of soil and vegetation characteristics on these two memory effects. The data sets used in this study are as follows: (1) a 19-year NDVI time series from National Oceanic and Atmospheric Administration (NOAA) satellites, (2) rainfall records from a network of 1160 rain-gauge stations compiled by the Water Research Commission (WRC), (3) vegetation types from Global Land Cover (GLC) 2000 and (4) soil characteristics from the soil and terrain database for Southern Africa (SOTERSAF). Results indicate that among 20–30% of NDVI variance that is not explained by the concurrent rainfall, one-third is explained by the two memory effects. Mem1 is found to have maximum effect in the northwest of our study domain, near the Botswana boundary, in the South Kalahari. Associated conditions are open grasslands growing on Arenosols. Mem1 is less important in the southeast, particularly in open grassland with shrubs growing on Cambisols. Thus, Mem1 mainly depends on soil texture. Mem2 is more widespread and its influence is the greatest in the centre, the south and the east of our domain. It is related to rainfall from January to April, which controls, beyond the intervening dry season, the interannual variations of NDVI (December to September) at the beginning of the next rainy season. Through these new findings, this article emphasizes again the high potential of remote-sensing techniques to monitor and understand the dynamics of semi-arid environments.  相似文献   

6.
ABSTRACT

A method for predicting the dynamic spatio-temporal variations of the normalized difference vegetation index (NDVI) based on precipitation is proposed using combined nonlinear autoregressive with exogenous input (NARX) networks and artificial neural networks (ANNs). The proposed method is validated by applying to predict the spatio-temporal NDVI for the Hulunbuir grassland located in Inner Mongolia, China. The results show the good predictive ability for the spatio-temporal variations of NDVI with the mean absolute percentage error of 11.59%, mean absolute error of 7.11 × 10?2 and root mean square error of 8.06 × 10?2, respectively. The approach presented in the paper can be further used as the guidance to reduce the occurrence of overgrazing in the arid and semi-arid grasslands.  相似文献   

7.
The currency market is one of the most efficient markets, making it very difficult to predict future prices. Several studies have sought to develop more accurate models to predict the future exchange rate by analyzing econometric models, developing artificial intelligence models and combining both through the creation of hybrid models. This paper proposes a hybrid model for forecasting the variations of five exchange rates related to the US Dollar: Euro, British Pound, Japanese Yen, Swiss Franc and Canadian Dollar. The proposed model uses Independent Component Analysis (ICA) to deconstruct the series into independent components as well as neural networks (NN) to predict each component. This method differentiates this study from previous works where ICA has been used to extract the noise of time series or used to obtain explanatory variables that are then used in forecasting. The proposed model is then compared to random walk, autoregressive and conditional variance models, neural networks, recurrent neural networks and long–short term memory neural networks. The hypothesis of this study supposes that first deconstructing the exchange rate series and then predicting it separately would produce better forecasts than traditional models. By using the mean squared error and mean absolute percentage error as a measures of performance and Model Confidence Sets to statistically test the superiority of the proposed model, our results showed that this model outperformed the other models examined and significantly improved the accuracy of forecasts. These findings support this model’s use in future research and in decision-making related to investments.  相似文献   

8.
The ability of NOAA/AVHRR data to monitor vegetation response to rainfall in three different vegetation zones was assessed along a north-south transect in Israel. The NDVI database was developed from atmospherically- and radiometrically-corrected NDVI composites from observations spanning three years. Three vegetation zones, Mediterranean region, transition zone, and semiarid region, were geographically separated by means of NDVI values. Based on three years of AVHRR observations during a relatively dry year and two years with near average rainfall, the phenological characteristics for all three vegetation zones were very similar and stable. The results showed that only a few AVHRR observations are necessary to monitor the seasonal and spatial variability of vegetation cover in different climatic zones located in Israel. The NDVI of the Israeli transition zone was found to be very sensitive to rainfall. The difference between maximum and minimum NDVI values in rainy season in the transition zone was at least two times higher than that in the Mediterranean and the semiarid regions. This phenomenon can be used as an indicator of any environmental changes in this region.  相似文献   

9.
Temporal relations between AVHRR NDVI and rainfall data over East Africa at 10-day and monthly time scales have been analysed using distributed lag models. On average, only 10 per cent of the variation in 10-day NDVI values could be explained by concurrent and preceding rainfall. Corresponding values for monthly data was 36 per cent. If it is assumed that rainfall data can be used as an indicator of vegetation development the study indicates that AVHRR NDVI may have limitations for temporal vegetation monitoring in these environments.  相似文献   

10.
For thirty years, simple crop water balance models have been used by the early warning community to monitor agricultural drought. These models estimate and accumulate actual crop evapotranspiration, evaluating environmental conditions based on crop water requirements. Unlike seasonal rainfall totals, these models take into account the phenology of the crop, emphasizing conditions during the peak grain filling phase of crop growth. In this paper we describe an analogous metric of crop performance based on time series of Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) imagery. A special temporal filter is used to screen for cloud contamination. Regional NDVI time series are then composited for cultivated areas, and adjusted temporally according to the timing of the rainy season. This adjustment standardizes the NDVI response vis-à-vis the expected phenological response of maize. A national time series index is then created by taking the cropped-area weighted average of the regional series. This national time series provides an effective summary of vegetation response in agricultural areas, and allows for the identification of NDVI green-up during grain filling. Onset-adjusted NDVI values following the grain filling period are well correlated with U.S. Department of Agriculture production figures, possess desirable linear characteristics, and perform better than more common indices such as maximum seasonal NDVI or seasonally averaged NDVI. Thus, just as appropriately calibrated crop water balance models can provide more information than seasonal rainfall totals, the appropriate agro-phenological filtering of NDVI can improve the utility and accuracy of space-based agricultural monitoring.  相似文献   

11.
Monitoring desertification and land degradation over sub-Saharan Africa   总被引:1,自引:0,他引:1  
A desertification monitoring system is developed that uses four indicators derived using continental-scale remotely sensed data: vegetation cover, rain use efficiency (RUE), surface run-off and soil erosion. These indicators were calculated on a dekadal time step for 1996. Vegetation cover was estimated using the Normalized Difference Vegetation Index (NDVI). The estimation of RUE also employed NDVI and, in addition, rainfall derived from Meteosat cold cloud duration data. Surface run-off was modelled using the Soil Conservation Service (SCS) model parametrized using the rainfall estimates, vegetation cover, land cover, and digital soil maps. Soil erosion, one of the most indicative parameters of the desertification process, was estimated using a model parametrized by overland flow, vegetation cover, the digital soil maps and a digital elevation model (DEM). The four indicators were then combined to highlight the areas with the greatest degradation susceptibility. The system has potential for near-real time monitoring and application of the methodology to the remote sensing data archives would allow both spatial and temporal trends in degradation to be determined.  相似文献   

12.
AVHRR (Advanced Very High Resolution Radiometer) GIMMS (Global Inventory Modelling and Mapping Studies) NDVI (Normalized Difference vegetation Index) data is available from 1981 to present time. The global coverage 8 km resolution 15-day composite data set has been used for numerous local to global scale vegetation time series studies during recent years. Several aspects however potentially introduce noise in the NDVI data set due to the AVHRR sensor design and data processing. More recent NDVI data sets from both Terra MODIS and SPOT VGT data are considered an improvement over AVHRR and these products in theory provide a possibility to evaluate the accuracy of GIMMS NDVI time series trend analysis for the overlapping period of available data. In this study the accuracy of the GIMMS NDVI time series trend analysis is evaluated by comparison with the 1 km resolution Terra MODIS (MOD13A2) 16-day composite NDVI data, the SPOT Vegetation (VGT) 10-day composite (S10) NDVI data and in situ measurements of a test site in Dahra, Senegal. Linear least squares regression trend analysis on eight years of GIMMS annual average NDVI (2000-2007) has been compared to Terra MODIS (1 km and 8 km resampled) and SPOT VGT NDVI data 1 km (2000-2007). The three data products do not exhibit identical patterns of NDVI trends. SPOT VGT NDVI data are characterised by higher positive regression slopes over the 8-year period as compared to Terra MODIS and AVHRR GIMMS NDVI data, possibly caused by a change in channels 1 and 2 spectral response functions from SPOT VGT1 to SPOT VGT2 in 2003. Trend analysis of AVHRR GIMMS NDVI exhibits a regression slope range in better agreement with Terra MODIS NDVI for semi-arid areas. However, GIMMS NDVI shows a tendency towards higher positive regression slope values than Terra MODIS in more humid areas. Validation of the different NDVI data products against continuous in situ NDVI measurements for the period 2002-2007 in the semi-arid Senegal revealed a good agreement between in situ measurements and all satellite based NDVI products. Using Terra MODIS NDVI as a reference, it is concluded that AVHRR GIMMS coarse resolution NDVI data set is well-suited for long term vegetation studies of the Sahel-Sudanian areas receiving < 1000 mm rainfall, whereas interpretation of GIMMS NDVI trends in more humid areas of the Sudanian-Guinean zones should be done with certain reservations.  相似文献   

13.
The response of photosynthetic activity to interannual rainfall variations in Africa South of the Sahara is examined using 20 years (1981-2000) of Normalised Difference Vegetation Index (NDVI) AVHRR data. Linear correlations and regressions were computed between annual NDVI and annual rainfall at a 0.5° latitude/longitude resolution, based on two gridded precipitation datasets (Climate Prediction Center Merged Analysis of Precipitation [CMAP] and Climatic Research Unit [CRU]). The spatial patterns were then examined to detect how they relate to the mean annual rainfall amounts, land-cover types as from the Global Land Cover 2000 data set, soil properties and soil types. Yearly means were computed starting from the beginning of the vegetative year (first month after the minimum of the NDVI mean regime), with a one-month lead for rainfall.One third of tropical Africa displays significant (95% c.l.) correlations between interannual NDVI variations and those of rainfall. At continental scale, soil types and soil properties are only minor factors in the overall distribution of the correlations. Mean annual rainfall amounts and land-cover types are much more discriminating. The largest correlations, mostly over 0.60, are distinctly found in semi-arid (200-600 mm annual rainfall) open grassland and cropland areas. The presence of one of these two determinants (semi-aridity, and favourable land-cover type, i.e. open grassland and cropland) in the absence of the other does not systematically result in a significant correlation between rainfall and NDVI. By contrast, NDVI variations are independent from those of rainfall in markedly arid environments and in most forest and woodland areas. This results from a low signal-to-noise ratio in the former, and the fact that precipitation is generally not a limiting factor in the latter.The marginal response of NDVI to a given increase/decrease in rainfall, as described by the slope of the regression, displays a similar pattern to that of the correlation, with maximum slopes in semi-arid regions, except that a weaker response is noted in more densely populated areas, suggesting an incidence of particular land-use and agricultural practises.One-year lag relationships between annual rainfall and NDVI in the next year were also considered. Ten percent of the grid-points show significant correlations, but the spatial patterns remain difficult to interpret.  相似文献   

14.
Interannual trends in annual and seasonal vegetation activities from 1982 to 1990 on a global scale were analysed using the Pathfinder AVHRR Land NDVI data set corrected by utilising desert and high NDVI areas. Climate effects on interannual variations in NDVI were also investigated using temperature and precipitation data compiled from stational observations. In the northern middlehigh latitudes, vegetation activities increased over broad regions because of a gradual rise in temperature. NDVI increases were also detected in the tropical regions, such as western Africa and south-eastern Asia. Plant photosynthetic activities on the other hand, decreased remarkably in some arid and semi-arid areas in the Southern Hemisphere, because annual rainfall decreased during this period.  相似文献   

15.
Among the various potential applications of neural networks, forecasting is considered to be a major application. Several researchers have reported their experiences with the use of neural networks in forecasting, and the evidence is inconclusive. This paper presents the results of a forecasting competition between a neural network model and a Box-Jenkins automatic forecasting expert system. Seventy-five series, a subset of data series which have been used for comparison of various forecasting techniques, were analysed using the Box-Jenkins approach and a neural network implementation. The results show that the simple neural net model tested on this set of time series could forecast about as well as the Box-Jenkins forecasting system.  相似文献   

16.
Important issues such as the prediction of drought, fire risk and forest disease are based on analysis of forest vegetation response. A method of forecasting the short-term response of forest vegetation on the basis of an autoregressive integrated moving average (ARIMA) analysis was designed in this study. We used 10-day maximum value composite (MVC) bands of the Normalized Difference Vegetation Index (NDVI) obtained from National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) data from 1993 to 1997. Using the theory of stochastic processes (Box–Jenkins), the MVC-NDVI series was analysed and a seasonal ARIMA (SARIMA) model was developed for forecasting NDVI in the following 10-day periods. The SARIMA model identified a moving-average regular term with a 10-day lag and an autoregressive 37 10-day period seasonal term with a one-season (1-year) component. The study also demonstrated a slight relationship between the NDVI and the precipitation level in some species of conifers by using climatic time series and the analysis of dynamic models and allowed us to elaborate an image of the immediate future NDVI for the study area (Castile and Leon, Spain).  相似文献   

17.
干旱半干旱区植被变化研究较多,然而很少关注资源型城市社会经济对植被变化影响。基于2000~2020年鄂尔多斯市MOD13Q1数据、降雨和温度等气候数据、原煤产量等11个社会经济指标,结合GIS技术和线性回归法等统计学方法,对植被覆盖时空变化及其影响因素进行了研究。结果表明:①21年间鄂尔多斯的NDVI值介于0.233~0.395,呈波动性增长趋势,增长速率为0.059/10 a;下辖的8个区县的NDVI值也呈波动性增长趋势,但各地区存在差异。②鄂尔多斯植被呈东北高,西南低的分布特征,低植被区面积5.35万km2,占整个鄂尔多斯面积的61.58%,高植被区面积仅0.20万km2;植被改善区面积远远大于植被退化区面积,改善区占整个鄂尔多斯面积的52.19%,植被退化区仅占3.69%。③NDVI值与降雨量表现为极显著性正相关,相关系数为0.794(P<0.01);NDVI变化与当月累计降雨量的相关系数较大,与1个月前温度的相关系数较大。④NDVI变化与11种社会经济指标均表现为极显著正相关,相关性为0.728~0.796(P<0.01)。鄂尔多斯植被恢复效果较好,降雨量和温度是影响植被生长的主要因素,NDVI变化对降雨量的响应无明显滞后性,对温度的响应存在一个月的滞后期,社会经济发展对植被覆盖的积极作用大于消极影响。  相似文献   

18.
Rain-use efficiency (RUE; the ratio of vegetation productivity to annual precipitation) has been suggested as a measure for assessing land degradation in arid/semi-arid areas. In the absence of anthropogenic influence, RUE has been reported to be constant over time, and any observed change may therefore be attributed to non-rainfall impacts. This study presents an analysis of the decadal time-scale changes in the relationship between a proxy for vegetation productivity (ΣNDVI) and annual rainfall in the Sahel-Sudanian zone of Africa. The aim is to test the quality of data input and the usefulness of both the RUE approach and an alternative method for separating the effects on vegetation productivity of rainfall change and human impact. The analyses are based on earth observation of both rainfall (GPCP (Global Precipitation Climatology Project), 1982-2007 and RFE (Rainfall Estimate) (1996-2007)) and ΣNDVI (AVHRR GIMMS NDVI dataset, 1982-2007). It is shown that the increase in ΣNDVI has been substantial in the Sahel-Sudanian zone over the 1982-2007 period, whereas for the period 1996-2007 the pattern of ΣNDVI trends is more complex. Also, trend analysis of annual rainfall from GPCP data (2.5° resolution) and RFE data (0.1° resolution) suggests that rainfall has increased over both periods. Further it is shown that RUE values are highly correlated to rainfall, undermining the use of earth observation (EO)-based RUE (using ΣNDVI) as a means of separating rainfall impacts from other factors. An alternative method identify temporal trends in residuals of ΣNDVI, after regressing it against annual rainfall, is tested, yet is shown to be useful only where a high correlation between ΣNDVI and annual rainfall exists. For the areas in the Sahel-Sudanian zone for which this condition is fulfilled, trend analyses suggest very limited anthropogenic land degradation in the Sahel-Sudanian zone.  相似文献   

19.
The characteristics of Normalized Difference Vegetation Index (NDVI) time series can be disaggregated into a set of quantitative metrics that may be used to derive information about vegetation phenology and land cover. In this paper, we examine the patterns observed in metrics calculated for a time series of 8 years over the southwest of Western Australia—an important crop and animal production area of Australia. Four analytical approaches were used; calculation of temporal mean and standard deviation layers for selected metrics showing significant spatial variability; classification based on temporal and spatial patterns of key NDVI metrics; metrics were analyzed for eight areas typical of climatic and production systems across the agricultural zone; and relationships between total production and productivity measured by dry sheep equivalents were developed with time integrated NDVI (TINDVI). Two metrics showed clear spatial patterns; the season duration based on the smooth curve produced seven zones based on increasing length of growing season; and TINDVI provided a set of classes characterized by differences in overall magnitude of response, and differences in response in particular years. Frequency histograms of TINDVI could be grouped on the basis of a simple shape classification: tall and narrow with high, medium or low mean indicating most land is responsive agricultural cover with uniform seasonal conditions; broad and short indicating that land is of mixed cover type or seasonal conditions are not spatially uniform. TINDVI showed a relationship to agricultural productivity that is dependent on the extent to which crop or total agricultural production was directly reduced by rainfall deficiency. TINDVI proved most sensitive to crop productivity for Statistical Local Areas (SLAs) having rainfall less than 600 mm, and in years when rainfall and crop production were highly correlated. It is concluded that metrics from standardized NDVI time series could be routinely and transparently used for retrospective assessment of seasonal conditions and changes in vegetation responses and cover.  相似文献   

20.
This paper describes the use of satellite data to calibrate a new climate vegetation greenness relation for global change studies. We examined statistical relations between annual climate indexes (temperature, precipitation, and surface radiation) and seasonal attributes of the AVHRR Normalized Difference Vegetation Index (NDVI) time series for the mid-1980s in order to refine our understanding of intra-annual patterns and global controls on natural vegetation dynamics. Multiple linear regression results using global 1 gridded data sets suggest that three climate indexes: degree days (growing/chilling), annual precipitation total, and an annual moisture index together can account to 70-80% of the geographical variation in the NDVI seasonal extremes (maximum and minimum values) for the calibration year 1984. Inclusion of the same annual climate index values from the previous year explains no substantial additional portion of the global scale variation in NDVI seasonal extremes. The monthly timing of NDVI extremes is closely associated with seasonal patterns in maximum and minimum temperature and rainfall, with lag times of 1 to 2 months. We separated well-drained areas from 1 grid cells mapped as greater than 25% inundated coverage for estimation of both the magnitude and timing of seasonal NDVI maximum values. Predicted monthly NDVI, derived from our climate-based regression equations and Fourier smoothing algorithms, shows good agreement with observed NDVI for several different years at a series of ecosystem test locations from around the globe. Regions in which NDVI seasonal extremes are not accurately predicted are mainly high latitude zones, mixed and disturbed vegetation types, and other remote locations where climate station data are sparse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号