首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
The online graph bandwidth problem is defined, and we present an online algorithm that always outputs a (((2k − 1)n + 1)/2k)-bandwidth function for any n-vertex graph with bandwidth k. A lower bound of (k/(k + 1))n − 2 is shown for any such algorithm. Two other protocols for online problems are given, and we prove lower bounds for the bandwidth problem under both of these alternative protocols.  相似文献   

3.
In this article we develop quantum algorithms for learning and testing juntas, i.e. Boolean functions which depend only on an unknown set of k out of n input variables. Our aim is to develop efficient algorithms: (1) whose sample complexity has no dependence on n, the dimension of the domain the Boolean functions are defined over; (2) with no access to any classical or quantum membership (“black-box”) queries. Instead, our algorithms use only classical examples generated uniformly at random and fixed quantum superpositions of such classical examples; (3) which require only a few quantum examples but possibly many classical random examples (which are considered quite “cheap” relative to quantum examples). Our quantum algorithms are based on a subroutine FS which enables sampling according to the Fourier spectrum of f; the FS subroutine was used in earlier work of Bshouty and Jackson on quantum learning. Our results are as follows: (1) We give an algorithm for testing k-juntas to accuracy ε that uses O(k/ϵ) quantum examples. This improves on the number of examples used by the best known classical algorithm. (2) We establish the following lower bound: any FS-based k-junta testing algorithm requires queries. (3) We give an algorithm for learning k-juntas to accuracy ϵ that uses O−1 k log k) quantum examples and O(2 k log(1/ϵ)) random examples. We show that this learning algorithm is close to optimal by giving a related lower bound. Supported in part by NSF award CCF-0347282, by NSF award CCF-0523664, and by a Sloan Foundation Fellowship.  相似文献   

4.
5.
Parallel integer sorting and simulation amongst CRCW models   总被引:1,自引:0,他引:1  
 In this paper a general technique for reducing processors in simulation without any increase in time is described. This results in an O(√log n) time algorithm for simulating one step of PRIORITY on TOLERANT with processor-time product of O(n log log n); the same as that for simulating PRIORITY on ARBITRARY. This is used to obtain an O(log n/log log n+√log n (log log m− log log n)) time algorithm for sorting n integers from the set {0,…, m−1}, mn, with a processor-time product of O(n log log m log log n) on a TOLERANT CRCW PRAM. New upper and lower bounds for ordered chaining problem on an allocated COMMON CRCW model are also obtained. The algorithm for ordered chaining takes O(log n/log log n) time on an allocated PRAM of size n. It is shown that this result is best possible (upto a constant multiplicative factor) by obtaining a lower bound of Ω(r log n/(log r+log log n)) for finding the first (leftmost one) live processor on an allocated-COMMON PRAM of size n of r-slow virtual processors (one processor simulates r processors of allocated PRAM). As a result, for ordered chaining problem, “processor-time product” has to be at least Ω(n log n/log log n) for any poly-logarithmic time algorithm. Algorithm for ordered-chaining problem results in an O(log N/log log N) time algorithm for (stable) sorting of n integers from the set {0,…, m−1} with n-processors on a COMMON CRCW PRAM; here N=max(n, m). In particular if, m=n O(1) , then sorting takes Θ(log n/log log n) time on both TOLERANT and COMMON CRCW PRAMs. Processor-time product for TOLERANT is O(n(log log n)2). Algorithm for COMMON uses n processors. Received August 13, 1992/June 30, 1995  相似文献   

6.
We consider repeated communication sessions between a RFID Tag (e.g., Radio Frequency Identification, RFID Tag) and a RFID Verifier. A proactive information theoretic security scheme is proposed. The scheme is based on the assumption that the information exchanged during at least one of every n successive communication sessions is not exposed to an adversary. The Tag and the Verifier maintain a vector of n entries that is repeatedly refreshed by pairwise xoring entries, with a new vector of n entries that is randomly chosen by the Tag and sent to the Verifier as a part of each communication session. The general case in which the adversary does not listen in k≥1 sessions among any n successive communication sessions is also considered. A lower bound of n⋅(k+1) for the number of random numbers used during any n successive communication sessions is proven. In other words, we prove that an algorithm must use at least n⋅(k+1) new random numbers during any n successive communication sessions. Then a randomized scheme that uses only O(nlog n) new random numbers is presented. A computational secure scheme which is based on the information theoretic secure scheme is used to ensure that even in the case that the adversary listens in all the information exchanges, the communication between the Tag and the Verifier is secure.  相似文献   

7.
   Abstract. A graph-theoretic approach to study the complexity of Boolean functions was initiated by Pudlák, R?dl, and Savicky [PRS] by defining models of computation on graphs. These models generalize well-known models of Boolean complexity such as circuits, branching programs, and two-party communication complexity. A Boolean function f is called a 2-slice function if it evaluates to zero on inputs with less than two 1's and evaluates to one on inputs with more than two 1's. On inputs with exactly two 1's f may be nontrivially defined. There is a natural correspondence between 2-slice functions and graphs. Using the framework of graph complexity, we show that sufficiently strong superlinear monotone lower bounds for the very special class of {2-slice functions} would imply superpolynomial lower bounds over a complete basis for certain functions derived from them. We prove, for instance, that a lower bound of n 1+Ω(1) on the (monotone) formula size of an explicit 2-slice function f on n variables would imply a 2 Ω(ℓ) lower bound on the formula size over a complete basis of another explicit function g on l variables, where l=Θ( log n) . We also consider lower bound questions for depth-3 bipartite graph complexity. We prove a weak lower bound on this measure using algebraic methods. For instance, our result gives a lower bound of Ω(( log n) 3 / ( log log n) 5 ) for bipartite graphs arising from Hadamard matrices, such as the Paley-type bipartite graphs. Lower bounds for depth-3 bipartite graph complexity are motivated by two significant applications: (i) a lower bound of n Ω(1) on the depth-3 complexity of an explicit n -vertex bipartite graph would yield superlinear size lower bounds on log-depth Boolean circuits for an explicit function, and (ii) a lower bound of
would give an explicit language outside the class Σ 2 cc of the two-party communication complexity as defined by Babai, Frankl, and Simon [BFS]. Our lower bound proof is based on sign-representing polynomials for DNFs and lower bounds on ranks of ±1 matrices even after being subjected to sign-preserving changes to their entries. For the former, we use a result of Nisan and Szegedy [NS] and an idea from a recent result of Klivans and Servedio [KS]. For the latter, we use a recent remarkable lower bound due to Forster [F1].  相似文献   

8.
Consider the following model on the spreading of messages. A message initially convinces a set of vertices, called the seeds, of the Erdős-Rényi random graph G(n,p). Whenever more than a ρ∈(0,1) fraction of a vertex v’s neighbors are convinced of the message, v will be convinced. The spreading proceeds asynchronously until no more vertices can be convinced. This paper derives lower bounds on the minimum number of initial seeds, min-seed(n,p,d,r)\mathrm{min\hbox{-}seed}(n,p,\delta,\rho), needed to convince a δ∈{1/n,…,n/n} fraction of vertices at the end. In particular, we show that (1) there is a constant β>0 such that min-seed(n,p,d,r)=W(min{d,r}n)\mathrm{min\hbox{-}seed}(n,p,\delta,\rho)=\Omega(\min\{\delta,\rho\}n) with probability 1−n −Ω(1) for pβ (ln (e/min {δ,ρ}))/(ρ n) and (2) min-seed(n,p,d,1/2)=W(dn/ln(e/d))\mathrm{min\hbox{-}seed}(n,p,\delta,1/2)=\Omega(\delta n/\ln(e/\delta)) with probability 1−exp (−Ω(δ n))−n −Ω(1) for all p∈[ 0,1 ]. The hidden constants in the Ω notations are independent of p.  相似文献   

9.
Degree-Optimal Routing for P2P Systems   总被引:1,自引:0,他引:1  
We define a family of Distributed Hash Table systems whose aim is to combine the routing efficiency of randomized networks—e.g. optimal average path length O(log 2 n/δlog δ) with δ degree—with the programmability and startup efficiency of a uniform overlay—that is, a deterministic system in which the overlay network is transitive and greedy routing is optimal. It is known that Ω(log n) is a lower bound on the average path length for uniform overlays with O(log n) degree (Xu et al., IEEE J. Sel. Areas Commun. 22(1), 151–163, 2004). Our work is inspired by neighbor-of-neighbor (NoN) routing, a recently introduced variation of greedy routing that allows us to achieve optimal average path length in randomized networks. The advantage of our proposal is that of allowing the NoN technique to be implemented without adding any overhead to the corresponding deterministic network. We propose a family of networks parameterized with a positive integer c which measures the amount of randomness that is used. By varying the value c, the system goes from the deterministic case (c=1) to an “almost uniform” system. Increasing c to relatively low values allows for routing with asymptotically optimal average path length while retaining most of the advantages of a uniform system, such as easy programmability and quick bootstrap of the nodes entering the system. We also provide a matching lower bound for the average path length of the routing schemes for any c. This work was partially supported by the Italian FIRB project “WEB-MINDS” (Wide-scalE, Broadband MIddleware for Network Distributed Services), .  相似文献   

10.
Karchmer, Raz, and Wigderson (1995) discuss the circuit depth complexity of n-bit Boolean functions constructed by composing up to d = log n/log log n levels of k = log n-bit Boolean functions. Any such function is in AC1 . They conjecture that circuit depth is additive under composition, which would imply that any (bounded fan-in) circuit for this problem requires depth. This would separate AC1 from NC1. They recommend using the communication game characterization of circuit depth. In order to develop techniques for using communication complexity to prove circuit depth lower bounds, they suggest an intermediate communication complexity problem which they call the Universal Composition Relation. We give an almost optimal lower bound of dkO(d 2(k log k)1/2) for this problem. In addition, we present a proof, directly in terms of communication complexity, that there is a function on k bits requiring circuit depth. Although this fact can be easily established using a counting argument, we hope that the ideas in our proof will be incorporated more easily into subsequent arguments which use communication complexity to prove circuit depth bounds. Received: July 30, 1999.  相似文献   

11.
Radio networks model wireless data communication when the bandwidth is limited to one wave frequency. The key restriction of such networks is mutual interference of packets arriving simultaneously at a node. The many-to-many (m2m) communication primitive involves p participant nodes from among n nodes in the network, where the distance between any pair of participants is at most d. The task is to have all the participants get to know all the input messages. We consider three cases of the m2m communication problem. In the ad-hoc case, each participant knows only its name and the values of n, p and d. In the partially centralized case, each participant knows the topology of the network and the values of p and d, but does not know the names of the other participants. In the centralized case, each participant knows the topology of the network and the names of all the participants. For the centralized m2m problem, we give deterministic protocols, for both undirected and directed networks, working in time, which is provably optimal. For the partially centralized m2m problem, we give a randomized protocol for undirected networks working in time with high probability (whp), and we show that any deterministic protocol requires time. For the ad-hoc m2m problem, we develop a randomized protocol for undirected networks that works in time whp. We show two lower bounds for the ad-hoc m2m problem. One lower bound states that any randomized protocol for the m2m ad hoc problem requires expected time. Another lower bound states that for any deterministic protocol for the m2m ad hoc problem, there is a network on which the protocol requires time when np(n)=Ω(n) and d>1, and that it requires Ω(n) time when np(n)=o(n). The results of this paper appeared in a preliminary form in “On many-to-many communication in packet radio networks” in Proceedings of the 10th Conference on Principles of Distributed Systems (OPODIS), Bordeaux, France, 2006, Lecture Notes in Computer Science 4305, Springer, Heidelberg, pp. 258–272. The work of B.S. Chlebus was supported by NSF Grant 0310503.  相似文献   

12.
13.
The power of an object type T can be measured as the maximum number n of processes that can solve consensus using only objects of T and registers. This number, denoted cons(T), is called the consensus power of T. This paper addresses the question of the weakest failure detector to solve consensus among a number k > n of processes that communicate using shared objects of a type T with consensus power n. In other words, we seek for a failure detector that is sufficient and necessary to “boost” the consensus power of a type T from n to k. It was shown in Neiger (Proceedings of the 14th annual ACM symposium on principles of distributed computing (PODC), pp. 100–109, 1995) that a certain failure detector, denoted Ω n , is sufficient to boost the power of a type T from n to k, and it was conjectured that Ω n was also necessary. In this paper, we prove this conjecture for one-shot deterministic types. We first show that, for any one-shot deterministic type T with cons(T) ≤ n, Ω n is necessary to boost the power of T from n to n + 1. Then we go a step further and show that Ω n is also the weakest to boost the power of (n + 1)-ported one-shot deterministic types from n to any k > n. Our result generalizes, in a precise sense, the result of the weakest failure detector to solve consensus in asynchronous message-passing systems (Chandra et al. in J ACM 43(4):685–722, 1996). As a corollary, we show that Ω t is the weakest failure detector to boost the resilience level of a distributed shared memory system, i.e., to solve consensus among n > t processes using (t − 1)-resilient objects of consensus power t. This paper is a revised and extended version of a paper that appeared in the Proceedings of the 17th International Symposium on Distributed Computing (DISC 2003), entitled “On failure detectors and type boosters.”  相似文献   

14.
We present new efficient deterministic and randomized distributed algorithms for decomposing a graph with n nodes into a disjoint set of connected clusters with radius at most k−1 and having O(n 1+1/k ) intercluster edges. We show how to implement our algorithms in the distributed CONGEST\mathcal{CONGEST} model of computation, i.e., limited message size, which improves the time complexity of previous algorithms (Moran and Snir in Theor. Comput. Sci. 243(1–2):217–241, 2000; Awerbuch in J. ACM 32:804–823, 1985; Peleg in Distributed Computing: A Locality-Sensitive Approach, 2000) from O(n) to O(n 1−1/k ). We apply our algorithms for constructing low stretch graph spanners and network synchronizers in sublinear deterministic time in the CONGEST\mathcal{CONGEST} model.  相似文献   

15.
Y. Nekrich 《Algorithmica》2007,49(2):94-108
In this paper we present new space efficient dynamic data structures for orthogonal range reporting. The described data structures support planar range reporting queries in time O(log n+klog log (4n/(k+1))) and space O(nlog log n), or in time O(log n+k) and space O(nlog  ε n) for any ε>0. Both data structures can be constructed in O(nlog n) time and support insert and delete operations in amortized time O(log 2 n) and O(log nlog log n) respectively. These results match the corresponding upper space bounds of Chazelle (SIAM J. Comput. 17, 427–462, 1988) for the static case. We also present a dynamic data structure for d-dimensional range reporting with search time O(log  d−1 n+k), update time O(log  d n), and space O(nlog  d−2+ε n) for any ε>0. The model of computation used in our paper is a unit cost RAM with word size log n. A preliminary version of this paper appeared in the Proceedings of the 21st Annual ACM Symposium on Computational Geometry 2005. Work partially supported by IST grant 14036 (RAND-APX).  相似文献   

16.
We consider the problem of routing and sorting ond-dimensionaln×...× mesh connected computers. Each of the processing units initially holdsk packets. We present randomized algorithms that solve these problems with (1+o(1))·max{2·d·n,k·n/2} communication steps. On a torus these problems are solved twice as fast. Thus we match the bisection bound up to lower-order terms, for allk≥4·d. Earlier algorithms required some additional Θ(n) steps or more, and were more complicated. With 2·d·n extra steps our algorithm can also route in the cut-through routing model.  相似文献   

17.
Given an undirected graph and 0 £ e £ 1{0\le\epsilon\le1}, a set of nodes is called an e{\epsilon}-near clique if all but an e{\epsilon} fraction of the pairs of nodes in the set have a link between them. In this paper we present a fast synchronous network algorithm that uses small messages and finds a near-clique. Specifically, we present a constant-time algorithm that finds, with constant probability of success, a linear size e{\epsilon}-near clique if there exists an e3{\epsilon^3}-near clique of linear size in the graph. The algorithm uses messages of O(log n) bits. The failure probability can be reduced to n Ω(1) by increasing the time complexity by a logarithmic factor, and the algorithm also works if the graph contains a clique of size Ω(n/(log log n) α ) for some a ? (0,1){\alpha \in (0,1)}. Our approach is based on a new idea of adapting property testing algorithms to the distributed setting.  相似文献   

18.
Routing and wavelength assignment (RWA) is a central issue to increase efficiency and reduce cost in Wavelength Division Multiplexing (WDM) optical networks. In this paper, we address the problem of wavelength assignment for realizing parallel FFT on a class of regular optical WDM networks. We propose two methods for sequential mapping and shift-reversal mapping of FFT communication pattern to the optical WDM networks concerned. By sequential mapping, the numbers of wavelengths required to realize parallel FFT with 2n nodes on WDM linear arrays, rings, 2-D meshes and 2-D tori are 2n − 1, 2n − 1, 2max (k,nk) − 1 and 2max (k,nk) − 1 respectively. By shift-reversal mapping, the numbers of wavelengths required are max (3× 2n − 3,2), 2n − 2, max (3× 2max (k,nk) − 3,2) and 2max (k,nk) − 2. These results show that shift-reversal mapping outperforms sequential mapping. Our results have a clear significance for applications because FFT represents a common computation pattern shared by a large class of scientific and engineering problems and WDM optical networks as a promising technology in networking has an increasing popularity.  相似文献   

19.
We revisit the problem of indexing a string S[1..n] to support finding all substrings in S that match a given pattern P[1..m] with at most k errors. Previous solutions either require an index of size exponential in k or need Ω(m k ) time for searching. Motivated by the indexing of DNA, we investigate space efficient indexes that occupy only O(n) space. For k=1, we give an index to support matching in O(m+occ+log nlog log n) time. The previously best solution achieving this time complexity requires an index of O(nlog n) space. This new index can also be used to improve existing indexes for k≥2 errors. Among others, it can support 2-error matching in O(mlog nlog log n+occ) time, and k-error matching, for any k>2, in O(m k−1log nlog log n+occ) time.  相似文献   

20.
We consider the problem of message (and bit) efficient broadcasting in complete networks with dynamic faults. Despite the simplicity of the setting, the problem turned out to be surprisingly interesting from the algorithmic point of view. In this paper we show an Ω(n + t f t/(t – 1)) lower bound on the number of messages sent by any t-step broadcasting algorithm, where f is the number of faults per step. The core of the paper contains a constructive O(n + t f (t + 1)/t ) upper bound. The algorithms involved are of time complexity O(t), not strictly t. In addition, we present a bit-efficient algorithm of O(n log2 n) bit and O(log n) time complexities. We also show that it is possible to achieve the same message complexity even if the nodes do not know the id’s of their neighbours, but instead have only a Weak Sense of Direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号