首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 218 毫秒

1.  局部特征及视觉一致性的柱面全景拼接算法  被引次数:2
   朱庆辉  尚媛园  邵珠宏  尹晔《中国图象图形学报》,2016年第21卷第11期
   目的 传统的基于平面拼接算法生成的全景图像存在严重的失真问题,很难保证良好的视觉一致性;而普通柱面拼接算法无法较好地满足实时性要求。为此,提出一种基于改进SIFT(scale-invariant feature transform)特征描述子的柱面全景图像拼接算法。方法 首先将待拼接的图像序列进行柱面投影,利用改进的SIFT特征检测器获取图像中的特征点,生成64维SIFT特征描述子;然后根据特征描述子之间的欧氏距离提取初始特征点对,利用RANSAC(random sample consensus)方法进一步剔除伪匹配特征点对并建立待拼接图像之间的空间变换矩阵;最后根据图像之间的空间变换矩阵进行图像配准,采用加权平均融合的方法完成图像的无缝拼接。结果 本文全景图拼接算法,可以有效地克服平面拼接算法存在的失真问题,保证了全景图像的视觉一致性。同时,相比普通柱面拼接算法,本文算法的拼接速度提高了近一倍。结论 通过对不同尺寸和数量的图像序列构建全景图,相对于平面拼接算法和普通柱面拼接算法,本文算法可以有效实现图像之间的拼接,生成宽视野、高分辨率的全景图像,且能够应用于对实时性要求比较高的图像拼接场合。    

2.  肺实质CT图像细化分割  
   曲彦  魏本征  尹义龙  楚陪陪  丛金玉《中国图象图形学报》,2017年第22卷第1期
   目的 由于肺部CT图像中各组织结构复杂、灰度分布不均匀,造成肺实质部分难以准确分割和提取。为了提高肺实质分割的准确率,本文提出了一种基于超像素的细化分割与模糊C均值聚类相结合的自动分割算法。方法 该算法充分利用肺部CT图像的灰度、纹理特征,同时为了正确标记超像素的分类,引入一种空间邻域信息来增强空间约束进而有效地解决灰度不均匀的问题,它能够对肺实质进行分割并除去其周围的主血管,然后利用形态学知识去除肺部的分支血管。结果 在临床患有四类疾病的患者CT图像数据集上采用改进的图像特征,使得肺实质分割的准确率提高了0.8%。同时,算法准确率提高到99.46%。结论 实验结果表明,本文算法能够实现肺部CT图像肺实质的自动细化分割,结果准确适用。该算法鲁棒性好、速度快,是一种精确有效的自动肺实质分割方法。    

3.  鲁棒空间约束的模糊聚类图像分割  
   刘金尧  纪则轩《中国图象图形学报》,2014年第19卷第10期
   目的 为进一步提高分割精度,在模糊聚类的基础上引入统计信息,提出一种鲁棒型空间约束的模糊聚类分割算法。方法 基于局部空间信息的先验概率与后验概率,提出一种新型空间约束项,并通过卷积操作提高运行效率;进而引入负对数联合概率作为测度函数,进一步提高算法对于各像素点所属类别的甄别能力;同时将测度函数与空间约束项整合至目标函数中,通过迭代更新各参数达到最小化目标函数的目的。结果 对于合成图像的实验结果表明,本文算法对于噪声类型和噪声强度具有较强的鲁棒性;对于彩色图像的实验结果表明,在适当的特征描述符的辅助下,本文算法也能够获得令人满意的分割结果和较高的分割精度。结论 本文算法克服了现有算法的缺陷,进一步提升了图像的分割精度。其适用于分割带噪声图像,且在适当纹理特征的辅助下分割彩色图像,与同类算法的比较实验结果验证了本文算法的有效性。    

4.  自适应特征点检测的可见-红外图像配准  
   王晗  魏明《中国图象图形学报》,2017年第22卷第2期
   目的 针对可见—红外图像之间配准点的数量不足、分布严重不均匀以及配准点之间的错配率高这3个核心问题,提出一种基于自适应特征点检测的可见—红外图像配准方法。方法 本文提出的自适应特征点检测方法,以Harris corner作为基本特征点;以特征点数目与空间分布为检测目标,从而自动地估计合适不同空间位置的特征点的检测阈值。在特征点对匹配中,将梯度方向与互信息相融合有效地添加了相似性函数的空间位置信息。结果 自适应Harris corner检测方法能够有效地提供空间分布均匀、数量充足的特征点。而梯度方向与互信息相融合的相似性匹配函数提高特征点的匹配率20%,降低配准误差50%。结论 本文提出的多传感器图像配准方法能够快速、准确地实现可见光图像与红外图像之间的配准,在CCD-IR图像融合领域具有很好的实用价值。    

5.  核空间中智模糊聚类及图像分割应用  
   崔西希  吴成茂《中国图象图形学报》,2016年第21卷第10期
   目的 为了更有效地提高中智模糊C-均值聚类对非凸不规则数据的聚类性能和噪声污染图像的分割效果,提出了核空间中智模糊均值聚类算法。方法 引入核函数概念。利用满足Mercer条件的非线性问题,用非线性变换把低维空间线性不可分的输入模式空间映射到一个先行可分的高维特征空间进行中智模糊聚类分割。结果 通过对大量图像添加不同的加性和乘性噪声进行分割测试获得的核空间中智模糊聚类算法提高了现有算法的对含噪声聚类的鲁棒性和分类性能。峰值信噪比至少提高0.8 dB。结论 本文算法具有显著的分割效果和良好的鲁棒性,并适应于医学,遥感图像处理需要。    

6.  Kinect传感器的彩色和深度相机标定  
   郭连朋  陈向宁  刘彬《中国图象图形学报》,2014年第19卷第11期
   目的 针对现有的Kinect传感器中彩色相机和深度相机标定尤其是深度相机标定精度差、效率低的现状,本文在现有的基于彩色图像和视差图像标定算法的基础上,提出一种快速、精确的改进算法。方法 用张正友标定法标定彩色相机,用泰勒公式化简深度相机中用于修正视差值的空间偏移量以简化由视差与深度的几何关系构建的视差畸变模型,并以该模型完成Kinect传感器的标定。结果 通过拍摄固定于标定平板上的标定棋盘在不同姿态下的彩色图像和视差图像,完成Kinect传感器的标定,获得彩色相机和深度相机的畸变参数及两相机之间的旋转和平移矩阵,标定时间为116 s,得到彩色相机的重投影误差为0.33,深度相机的重投影误差为0.798。结论 实验结果表明,该改进方法在保证标定精度的前提下,优化了求解过程,有效提高了标定效率。    

7.  结合类内和类间距离的可能聚类分割算法  
   刘璐  吴成茂《中国图象图形学报》,2016年第21卷第9期
   目的 为了进一步提高噪声图像分割的抗噪性和准确性,提出一种结合类内距离和类间距离的改进可能聚类算法并将其应用于图像分割。方法 该算法避免了传统可能性聚类分割算法中仅仅考虑以样本点到聚类中心的距离作为算法的测度,将类内距离与类间距离相结合作为算法的新测度,即考虑了类内紧密程度又考虑了类间离散程度,以便对不同的聚类结构有较强的稳定性和更好的抗噪能力,并且将直方图融入可能模糊聚类分割算法中提出快速可能模糊聚类分割算法,使其对各种较复杂图像的分割具有即时性。结果 通过人工合成图像和实际遥感图像分割测试结果表明,本文改进可能聚类算法是有效的,其分割轮廓清晰,分类准确且噪声较小,其误分率相比其他算法至少降低了2个百分点,同时能获得更满意的分割效果。结论 针对模糊C-均值聚类分割算法和可能性聚类分割算法对于背景和目标颜色相近的图像分类不准确的缺陷,将类内距离与类间距离相结合作为算法的测度有效的解决了图像分割归类问题,并且结合直方图提出快速可能模糊聚类分割算法使其对于大篇幅复杂图像也具有适用性。    

8.  核空间广义均衡模糊C-均值聚类算法  
   杜朵朵  吴成茂《中国图象图形学报》,2017年第22卷第2期
   目的 针对现有广义均衡模糊C-均值聚类不收敛问题,提出一种改进广义均衡模糊聚类新算法,并将其推广至再生希尔伯特核空间以便提高该类算法的普适性。方法 在现有广义均衡模糊C-均值聚类目标函数的基础上,利用Schweizer T范数极限表达式的性质构造了新的广义均衡模糊C-均值聚类最优化目标函数,然后采用拉格朗日乘子法获取其迭代求解所对应的隶属度和聚类中心表达式,同时对其聚类中心迭代表达式进行修改并得到一类聚类性能显著改善的修正聚类算法;最后利用非线性函数将数据样本映射至高维特征空间获得核空间广义均衡模糊聚类算法。结果 对Iris标准文本数据聚类和灰度图像分割测试表明,提出的改进广义均衡模模糊聚类新算法及其修正算法具有良好的分类性能,核空间广义均衡模糊聚类算法对比现有融入类间距离的改进模糊C-均值聚类(FCS)算法和改进再生核空间的模糊局部C-均值聚类(KFLICM)算法能将图像分割的误分率降低10%30%。结论 本文算法克服了现有广义均衡模糊C-均值聚类算法的缺陷,同时改善了聚类性能,适合复杂数据聚类分析的需要。    

9.  结合超像元和子空间投影支持向量机的高光谱图像分类  
   冉琼  于浩洋  高连如  李伟  张兵《中国图象图形学报》,2018年第23卷第1期
   目的 高光谱图像包含了丰富的空间、光谱和辐射信息,能够用于精细的地物分类,但是要达到较高的分类精度,需要解决高维数据与有限样本之间存在矛盾的问题,并且降低因噪声和混合像元引起的同物异谱的影响。为有效解决上述问题,提出结合超像元和子空间投影支持向量机的高光谱图像分类方法。方法 首先采用简单线性迭代聚类算法将高光谱图像分割成许多无重叠的同质性区域,将每一个区域作为一个超像元,以超像元作为图像分类的最小单元,利用子空间投影算法对超像元构成的图像进行降维处理,在低维特征空间中执行支持向量机分类。本文高光谱图像空谱综合分类模型,对几何特征空间下的超像元分割与光谱特征空间下的子空间投影支持向量机(SVMsub),采用分割后进行特征融合的处理方式,将像元级别转换为面向对象的超像元级别,实现高光谱图像空谱综合分类。结果 在AVIRIS(airbone visible/infrared imaging spectrometer)获取的Indian Pines数据和Reflective ROSIS(optics system spectrographic imaging system)传感器获取的University of Pavia数据实验中,子空间投影算法比对应的非子空间投影算法的分类精度高,特别是在样本数较少的情况下,分类效果提升明显;利用马尔可夫随机场或超像元融合空间信息的算法比对应的没有融合空间信息的算法的分类精度高;在两组数据均使用少于1%的训练样本情况下,同时融合了超像元和子空间投影的支持向量机算法在两组实验中分类精度均为最高,整体分类精度高出其他相关算法4%左右。结论 利用超像元处理可以有效融合空间信息,降低同物异谱对分类结果的不利影响;采用子空间投影能够将高光谱数据变换到低维空间中,实现有限训练样本条件下的高精度分类;结合超像元和子空间投影支持向量机的算法能够得到较高的高光谱图像分类精度。    

10.  多参数加权的无缝纹理映射算法  
   刘彬  陈向宁  薛俊诗《中国图象图形学报》,2015年第20卷第7期
   目的 针对基于图像3维重建中纹理映射存在缝隙的问题,提出一种多参数加权的无缝纹理映射算法。方法 算法根据图像的标定信息对三角格网进行聚类分割,将重建模型聚类成不同参考图像的网格贴片,并对贴片排序生成纹理图像,加权融合重建顶点的法线角度、图像视点、模型深度等信息生成纹理贴片像素,最后采用多分辨率分解融合技术消除纹理贴片缝隙,实现无缝的纹理映射。结果 对不同的测试数据进行了验证,本文算法在保持一定清晰度的前提下消除了纹理的缝隙,即使对于构网误差较大的区域也能得到较为满意的结果,同时本文算法支持大数据的3维纹理映射。结论 提出了一种无缝的纹理映射算法,算法通过构造一个平滑的加权方程融合多源信息消除纹理的接缝,实验结果表明了本文算法的有效性及实用性,得到了高保真的无缝纹理映射效果,可应用到城市级别的大场景3维重建领域。    

11.  级联回归的多姿态人脸配准  
   伍凯  朱恒亮  郝阳阳  马利庄《中国图象图形学报》,2017年第22卷第2期
   目的 人脸配准是当前计算机视觉领域的研究热点之一,其目的是准确定位出人脸图像中具有语义特征的面部关键点,这也是人脸识别、人脸美化等众多与人脸有关的视觉任务的重要步骤。最近,基于级联回归的人脸配准算法在配准精度和速度上都达到了最先进的水准。级联回归是一种迭代更新的算法,初始脸形将通过多个线性组合的弱回归器逐渐逼近真实的人脸形状。但目前的算法大多致力于改进学习方法或提取具有几何不变性的特征来提升弱回归器的能力,而忽略了初始脸形的质量,这极大的降低了它们在复杂场景下的配准精度,如夸张的面部表情和极端的头部姿态等。因此,在现有的级联回归框架上,提出自动估计初始形状的多姿态人脸配准算法。方法 本文算法首先在脸部区域提取基于高斯滤波一阶导数的梯度差值特征,并使用随机回归森林预测人脸形状;然后针对不同的形状使用独立的级联回归器。结果 验证初始形状估计算法的有效性,结果显示,本文的初始化算法能给现有的级联回归算法带来精度上的提升,同时结果也更加稳定;本文算法产生的初始形状都与实际脸型较为相近,只需很少的初始形状即可取得较高的精度;在COFW、HELEN和300W人脸数据库上,将本文提出的多姿态级联回归算法和现有配准算法进行对比实验,本文算法的配准误差相较现有算法分别下降了29.2%、13.3%和9.2%,结果表明,本文算法能有效消除不同脸型之间的干扰,在多姿态场景下得到更加精确的配准结果,并能达到实时的检测速度。结论 基于级联回归模型的多姿态人脸配准算法可以取得优于现有算法的结果,在应对复杂的脸形时也更加鲁棒。所提出的初始形状估计算法可以自动产生高质量的初始形状,用于提升现有的级联回归算法。    

12.  先验模型约束的抗干扰轮廓跟踪  
   刘大千  刘万军  费博雯《中国图象图形学报》,2017年第22卷第4期
   目的 基于水平集的轮廓提取方法被广泛用于运动物体的轮廓跟踪。针对传统方法易受局部遮挡、复杂背景等因素影响的问题,提出一种先验模型约束的抗干扰(AC-PMC)轮廓跟踪算法。方法 首先,选取图像序列的前5帧进行跟踪训练,将每帧图像基于颜色特征分割成若干超像素块,利用均值聚类组建簇集合,并通过该集合建立目标的先验模型。然后,利用水平集分割方法提取目标轮廓,并提出决策判定算法,判断是否需要引入形状先验模型加以约束,避免遮挡、复杂背景等影响。最后,提出一种在线模型更新算法,在特征集中加入适当特征补偿,使得更新的目标模型更为准确。结果 本文算法与多种优秀的轮廓跟踪算法相比,可以达到相同甚至更高的跟踪精度,在Fish、Face1、Face2、Shop、Train以及Lemming视频图像序列下的平均中心误差分别为3.46、7.16、3.82、13.42、14.72、12.47,算法的跟踪重叠率分别为0.92、0.74、0.85、0.77、0.73、0.82,算法的平均运行速度分别为4.27 帧/s、4.03 帧/s、3.11 帧/s、2.94 帧/s、2.16 帧/s、1.71 帧/s。结论 利用目标的先验模型约束以及提取轮廓过程中的决策判定,使本文算法在局部遮挡、目标形变、目标旋转、复杂背景等条件下具有跟踪准确、适应性强的特点。    

13.  结合相似性拟合与空间约束的图像分割  
   张峥嵘  詹天明  韦志辉《中国图象图形学报》,2014年第19卷第11期
   目的 图像中的目标一般含有很多子类,仅仅利用某个子类的特征无法完整地分割出目标区域。针对这一问题,提出一种结合相似性拟合与空间约束的图像交互式分割方法。方法 首先,通过手工标记的样本组成各个目标的字典,通过相似度量搜寻测试样本与各个目标的字典中最相似的原子建立拟合项;再结合图像的空间约束项,构建图像分割模型;最后利用连续最大流算法求解,快速实现图像分割的目的。结果 通过对比实验,本文方法的速度比基于稀疏表示的分类方法的速度提高约13倍,而与归一化切割(N-Cut),逻辑回归(logistic regression)等方法相比,本文方法能取得更稳定和准确的分割结果。此外,本文方法无需过完备字典,只需要训练样本能体现各个子类的信息即可得到稳定的图像分割结果。结论 本文交互式图像分割方法,通过结合相似性拟合以及空间约束建立分割模型,并由连续最大流算法求解,实现图像的快速准确的分割。实验结果表明,该方法能够胜任较准确地对自然图像进行分割以及目标提取等任务。    

14.  利用包含度和隶属度的遥感影像模糊分割  
   赵泉华  刘冬  李晓丽  李玉《中国图象图形学报》,2017年第22卷第7期
   目的 传统FCM算法及其改进算法均只采用隶属度作为分割判据实现图像分割。然而,在分割过程中聚类中心易受到同质区域内几何噪声的影响,导致此类算法难以有效分割具有几何噪声的图像。为了解决这一类问题,提出一种利用包含度和隶属度的遥感影像模糊分割算法。方法 该算法假设同一聚类对每个像素都有不同程度的包含度,将包含度作为一种新测度来描述聚类与像素间关系,并将包含度纳入目标函数中。该算法通过迭代最小化目标函数来得到最优的隶属度和包含度,然后,通过反模糊化隶属度和包含度之积实现带有几何噪声的遥感图像的分割。结果 采用本文算法分别对模拟图像,真实遥感影像进行分割实验,并与FCM算法和FLICM算法进行对比,定性结果表明,对含有几何噪声的区域,提出算法的用户精度和产品精度均高于FCM算法和FLICM算法,且总精度和Kappa值也高于对比算法。实验结果表明,本文算法能够抵抗几何噪声对图像分割的影响,且分割精度远远高于其他两种算法的分割精度。结论 提出算法通过考虑聚类对像素的包含性,能够有效抵抗几何噪声对图像分割的影响,使得算法具有较高的抗几何噪声能力,进而提高该算法对含有几何噪声图像的分割精度。提出算法适用于包含几何噪声的高分辨率遥感图像,具有很好的抗几何噪声性。    

15.  定位图像匹配尺度与区域的摄像机位姿实时跟踪  
   苗菁华  孙延奎《中国图象图形学报》,2017年第22卷第7期
   目的 提出一种定位图像匹配尺度及区域的有效算法,通过实现当前屏幕图像特征点与模板图像中对应尺度下部分区域中的特征点匹配,实现摄像机对模板图像的实时跟踪,解决3维跟踪算法中匹配精度与效率问题。方法 在预处理阶段,算法对模板图像建立多尺度表示,各尺度下的图像进行区域划分,在每个区域内采用ORB(oriented FAST and rotated BRIEF)方法提取特征点并生成描述子,由此构建图像特征点的分级分区管理模式。在实时跟踪阶段,对于当前摄像机获得的图像,首先定位该图像所对应的尺度范围,在相应尺度范围内确定与当前图像重叠度大的图像区域,然后将当前图像与模板图像对应的尺度与区域中的特征点集进行匹配,最后根据匹配点对计算摄像机的位姿。结果 利用公开图像数据库(stanford mobile visual search dataset)中不同分辨率的模板图像及更多图像进行实验,结果表明,本文算法性能稳定,配准误差在1个像素左右;系统运行帧率总体稳定在2030 帧/s。结论 与多种经典算法对比,新方法能够更好地定位图像匹配尺度与区域,采用这种局部特征点匹配的方法在配准精度与计算效率方面比现有方法有明显提升,并且当模板图像分辨率较高时性能更好,特别适合移动增强现实应用。    

16.  利用混合特征的多视角遥感图像配准  
   吴芳青  杨扬  潘安宁  杨昆《中国图象图形学报》,2017年第22卷第8期
   目的 多视角遥感图像配准是遥感图像处理领域的一项关键技术,其目的是精确获取图像间被测区域发生的几何变换关系。由于航拍视角变化以及地物的空间分布和几何形状的复杂度,多视角遥感图像间会产生非刚性畸变问题,增加了图像配准的难度,为此本文提出一种利用遥感图像SIFT(scale-invariant feature transform)特征点阵的全局和局部几何结构特征进行多视角遥感图像配准的算法。方法 通过增加对SIFT点阵的几何结构特征描述以及利用SIFT点阵间全局与局部几何结构特征的互补关系,提升存在非刚性畸变的多视角遥感图像配准精度。 结果 实验使用谷歌地球的卫星影像数据以及无人机航拍遥感数据对本文算法进行了测试,并与3种同类算法(SIFT、SURF(speeded-up robust features)、CPD(coherent point drift))进行对比实验,本文算法在存在非刚性畸变的多视角遥感图像配准中能够有效地提升SIFT特征点阵的配准精度,从而获得更加准确的多视角遥感图像配准结果。结论 本文实现了一种结合SIFT特征点阵的全局和局部几何结构特征进行多视角遥感图像配准的算法,实验结果表明了该方法对存在非刚性畸变的多视角遥感图像能够有效地进行配准,可适用于同源多视角情况下的遥感图像配准问题。    

17.  整合超像元分割和峰值密度的高光谱图像聚类  
   于文博  王忠勇  李山山  孙旭《中国图象图形学报》,2016年第21卷第10期
   目的 传统图像聚类算法多利用像元的光谱信息,较少考虑图像的空间信息,容易受到噪声干扰。针对该问题,提出一种整合超像元分割(SLIC)和峰值密度(DP)的高光谱图像聚类算法。方法 首先,利用超像元分割技术对高光谱图像进行分割并提取超像元光谱特征;然后,根据提取的超像元光谱特征,计算其峰值密度信息,搜索超像元光谱簇,构建像元与类别间的隶属度关系。最后,利用高光谱模拟数据以及两组真实高光谱图像评价算法的鲁棒性和精度。结果 在不同信噪比的模拟数据中,SLIC-DP算法在调整芮氏指标(ARI)最优的条件下,较K-means和SLIC-Kmeans的方差降低61.86%和41.61%,体现优越的鲁棒性。在高光谱数据集Salinas-A和Indian Pines中,SLIC-DP算法的ARI为0.777 1和0.325 7,较K-Means和SLIC-KMeans聚类算法分别增长10.71%,5.01%与78.86%,25.27%。结论 本文算法抗噪声能力强,充分利用空间信息与光谱信息,有效提升高光谱图像聚类精度。经验证,能满足高光谱图像信息提取和分析的要求,可进一步推广和研究。    

18.  基于RGB-D深度相机的室内场景重建  
   梅峰  刘京  李淳芃  王兆其《中国图象图形学报》,2015年第20卷第10期
   目的 重建包含真实纹理的彩色场景3维模型是计算机视觉领域重要的研究课题之一,由于室内场景复杂、采样图像序列长且运动无规则,现有的3维重建算法存在重建尺度受限、局部细节重建效果差的等问题。方法 以RGBD-SLAM 算法为基础并提出了两方面的改进,一是将深度图中的平面信息加入帧间配准算法,提高了帧间配准算法的鲁棒性与精度;二是在截断符号距离函数(TSDF)体重建过程中,提出了一种指数权重函数,相比普通的权重函数能更好地减少相机深度畸变对重建的影响。结果 本文方法在相机姿态估计中带来了比RGBD-SLAM方法更好的结果,平均绝对路径误差减少1.3 cm,能取得到更好的重建效果。结论 本文方法有效地提高了相机姿态估计精度,可以应用于室内场景重建中。    

19.  融合边界信息的高分辨率遥感影像分割优化算法  
   楚森森  洪亮  陈杰  邓敏  杨昆  刘纯《中国图象图形学报》,2016年第21卷第8期
   目的 针对目前区域分割算法获取的区域边界与真实地物边界不一致问题,利用高分辨率遥感影像地物内具有均质性和地物间边缘信息突出的特点,提出一种融合边界信息的高分辨率遥感影像分割优化算法。方法 首先采用Canny算法对遥感影像进行边缘提取并进行边缘连接处理,产生闭合边界;然后将边界与初始分割结果进行融合处理,获得新的分割结果;最后在闭合边界约束下,基于灰度相似性准则对新的分割结果进行区域合并,获得优化后的最终分割结果。结果 采用本文提出的分割优化算法对Mean Shift算法和eCognition软件获得的分割结果进行优化处理,优化后的分割结果与初始分割结果相比正确分割率(RR)平均提高了4%,验证了本文算法的有效性。结论 该优化算法适用性广,可优化基于区域、基于边界和基于聚类等多种分割方法,同时该算法既能保持高分辨率遥感影像分割的区域完整性,又能保持地物边缘细节特征,提高了分割精度。    

20.  虚拟结肠镜中皱襞预匹配的结肠配准  
   郭志飞  段侪杰  梁正荣《中国图象图形学报》,2017年第22卷第5期
   目的 虚拟结肠镜是一种采用CT或者MRI图像重建出结肠3维结构,通过漫游虚拟结肠来检测结肠组织,一般用于早期结直肠癌筛查。结肠配准能够有效提高息肉检测的效率和精确度,但由于仰卧和俯卧位下的结肠图像形变太大,现有的配准方案中特征点的提取没有考虑到较多特殊情况,因此需要寻找一个新的配准方案完成完整的结肠配准。方法 提出了一种新的结肠图像配准方法,能够完成不同体位获取的虚拟结肠图像之间的配准。首先提取可以反映结肠结构信息的皱襞特征,用模板匹配和特征匹配方法找出两幅结肠中匹配的皱襞对。然后将匹配对的中心点作为标记点,做基于标记点的非刚性粗配准,最后将两幅图做B样条配准完成细配准。这种方法能够将结肠内部较大的形变先矫正,使得两幅图之间的形变缩小到一定范围,然后利用传统配准方法能够完成配准。结果 在5套数据中,找到能够成功匹配的皱襞区域数量占所有分割出的皱襞区域总数量的62%左右,匹配错误率为4.7%左右。完成皱襞粗配准后,结肠形变明显趋于一致,灰度值相对误差减小,最终完成了结肠配准。结论 先进行皱襞匹配再做基于匹配好的皱襞的映射关系做结肠配准,能够将存在较大形变的两套结肠匹配起来。在之后的工作中需要量化特征点选取对配准结果的影响,同时在做配准评估时,单纯采用灰度差值不能很好完成评估,因为灰度特征只能一定程度反映整体差异,不能很好体现结构差异,需要添加其他评估标准辅助配准评估。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号