共查询到18条相似文献,搜索用时 62 毫秒
1.
运行时软件体系结构能够准确描述目标系统的真实状态和行为,对指导软件的维护和演化起着重要的作用。本文提出了一种发现运行时体系结构的方法,利用系统实现与体系结构风格之间的对应关系,定义了一种基于规则的转换映射;将收集到的底层系统事件解释成体系结构层面的操作,从而可获取运行时体系结构视图;通过一个即时通信系统实例说明了该方法的可行性。 相似文献
2.
3.
生物信息领域软件体系结构的研究与应用 总被引:1,自引:0,他引:1
生物信息领域软件体系结构是生物信息领域应用软件系统中构件及构件关系的描述。依照域工程的方法过程,分析了生物信息应用领域,给出了领域概念模型。随后以领域概念模型为基础分别提出了独立系统和开放分布式系统的生物信息领域软件体系结构参考模型,最后简要介绍了应用实例,并提出了一些领域内有待研究的问题。 相似文献
4.
5.
6.
支持运行监控的可信软件体系结构设计方法 总被引:3,自引:0,他引:3
近年来,软件的可信性成为软件质量的焦点,对软件可信性的分析、度量和应用支撑成为热点问题.对软件实施有效的监控是提升软件可信性的一种重要途径.然而目前的研究工作主要集中在软件编码以及相关技术的实现层,缺乏一套系统的软件体系结构设计方法以指导、支持运行监控的可信软件的分析和设计.通过引入面向侧面的软件体系结构设计方法及其相关概念,文中提出一种支持运行监控的可信软件体系结构设计方法.在支持运行监控的可信软件构造模型TSCM的基础上,利用一种面向侧面的体系结构描述语言AC2-ADL描述具有监控能力的软件体系结构,试图为分析和设计具有监控能力的系统的软件体系结构提供一种有效的解决方案.通过结合网上拍卖系统的案例展示该方法的主要步骤和结果,讨论了研究中存在的问题和进一步的工作. 相似文献
7.
8.
目前关于软件体系结构的描述已有许多工具支持,但各种工具不仅是领域相关的,而且描述方法也不尽统一,这使设计人员很难选择一种合适的工具,将体系结构的共同特征提取出来,秦为体系结构描述的核心模型,为各种工具提供了共同的基础-若要用某一种工具描述,只需增加与之相关的约束,另一方面将软件体系结构与当前主流的面向对象方法相结合,利用统一建模语言UML的扩充机制,从多个视图描述了软件体系结构,最后结合研究工作给 相似文献
9.
针对网络动态变化的环境和用户需求的变化,提出了一种动态自适应软件体系结构模型,然后在此基础上给出了自适应系统的适应过程,通过调整自身的行为,使得系统具有一定的自适应能力。最后,通过一个简单的实例验证该模型,结果表明该模型具有适应复杂多变的网络环境的能力。 相似文献
10.
徐蛟 《电脑编程技巧与维护》2014,(20):114-115
计算机软件在日常生活、工业、军事、国家安全领域已占有重要地位,软件的正确性、可靠性、安全性、可用性和可维护性已经受到广泛关注和深入研究。传统的验证技术包括定理证明、模型检测、以及测试,这些方法受到程序的运行以及程序所在环境的不可控等因素的限制。运行时验证的验证过程基于被监控系统的实际运行过程进行,从而有效地避免这些限制,是传统验证技术的有效补充。 相似文献
11.
12.
13.
随着已有Web服务数量的不断增加,如何利用现有的Web服务创建新的更复杂的Web服务成为一项新的研究课题。该文提出了MDA模型转换驱动的合成Web服务开发方法,针对Web合成的静态建模部分,提出了建立Web服务静态结构平台无关和平台相关模型的方法,给出了二者之间的转换规则。 相似文献
14.
效能评估软件开发过程中设计阶段的模型与效能评估软件结构具有高度相似性,传统软件开发方式中设计阶段与开发阶段相分离,效能评估的复杂化导致传统开发方式低效的弊端愈加明显,充分利用设计阶段模型是提高效能评估软件开发效率的关键。提出模型驱动的效能评估软件构建平台(Effectiveness Evaluation Software Develop Platform, EESDP),EESDP通过将效能评估描述为计算流程来完成效能评估软件的模型设计,通过模型转换和代码生成构建效能评估软件,开发过程具有高效性和易用性。 相似文献
15.
Yu Sun Jeff Gray Romain Delamare Benoit Baudry Jules White 《Journal of Software: Evolution and Process》2013,25(12):1335-1356
Domain‐Specific Modeling Languages (DSMLs) are playing an increasingly significant role in software development. By raising the level of abstraction using notations that are representative of a specific domain, DSMLs allow the core essence of a problem to be separated from irrelevant accidental complexities, which are typically found at the implementation level in source code. In addition to modeling the functional aspects of a system, a number of nonfunctional properties (e.g., quality of service constraints and timing requirements) also need to be integrated into models in order to reach a complete specification of a system. This is particularly true for domains that have distributed real time and embedded needs. Given a base model with functional components, maintaining the nonfunctional properties that crosscut the base model has become an essential modeling task when using DSMLs. The task of maintaining nonfunctional properties in DSMLs is traditionally supported by manual model editing or by using model transformation languages. However, these approaches are challenging to use for those unfamiliar with the specific details of a modeling transformation language and the underlying metamodel of the domain, which presents a7 steep learning curve for many users. This paper presents a demonstration‐based approach to automate the maintenance of nonfunctional properties in DSMLs. Instead of writing model transformation rules explicitly, users demonstrate how to apply the nonfunctional properties by directly editing the concrete model instances and simulating a single case of the maintenance process. By recording a user's operations, an inference engine analyzes the user's intention and generates generic model transformation patterns automatically, which can be refined by users and then reused to automate the same evolution and maintenance task in other models. Using this approach, users are able to automate the maintenance tasks without learning a complex model transformation language. In addition, because the demonstration is performed on model instances, users are isolated from the underlying abstract metamodel definitions. Our demonstration‐based approach has been applied to several scenarios, such as auto scaling and model layout. The specific contribution in this paper is the application of the demonstration‐based approach to capture crosscutting concerns representative of aspects at the modeling level. Several examples are presented across multiple modeling languages to demonstrate the benefits of our approach. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
16.
One of the most important challenges that software engineers (designers, developers) still have to face in their everyday work is the evolution of working database systems. As a step for the solution of this problem in this paper we propose MeDEA, which stands for Metamodel-based Database Evolution Architecture. MeDEA is a generic evolution architecture that allows us to maintain the traceability between the different artifacts involved in any database development process. MeDEA is generic in the sense that it is independent of the particular modeling techniques being used. In order to achieve this, a metamodeling approach has been followed for the development of MeDEA. The other basic characteristic of the architecture is the inclusion of a specific component devoted to storing the translation of conceptual schemas to logical ones. This component, which is one of the most noteworthy contributions of our approach, enables any modification (evolution) realized on a conceptual schema to be traced to the corresponding logical schema, without having to regenerate this schema from scratch, and furthermore to be propagated to the physical and extensional levels. 相似文献
17.
H. Gomaa L. Kerschberg V. Sugumaran C. Bosch I. Tavakoli L. O'Hara 《Automated Software Engineering》1996,3(3-4):285-307
This paper describes a prototype Knowledge-Based Software Engineering Environment used to demonstrate the concepts of reuse of software requirements and software architectures. The prototype environment, which is application-domain independent, is used to support the development of domain models and to generate target system specifications from them. The prototype environment consists of an integrated set of commercial-off-the-shelf software tools and custom developed software tools.The concept of reuse is prevalent at several levels of the domain modeling method and prototype environment. The environment itself is domain-independent thereby supporting the specification of diverse application domain models. The domain modeling method specifies a family of systems rather than a single system; features characterize the variations in functional requirements supported by the family and individual family members are specified by the features they are to support. The knowledge-based approach to target system generation provides the rules for generating target system specifications from the domain model; target system specifications, themselves, may be stored in an object repository for subsequent retrieval and reuse. 相似文献