首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
核磁共振图像受成像机制的影响往往导致图像中含有噪声以及偏移场,使得传统的图像分割方法很难得到较好的分割结果.为此,提出一种基于局部熵的分割与偏移场恢复耦合模型,首先在小邻域内构建基于模糊C均值(FCM)聚类模型的局部统计项并将偏移场信息耦合到模型中,以恢复图像偏移场;其次采用非局部信息来构建邻域正则项,使得模型在降低噪声影响的同时能有效地保留图像结构信息;最后在对局部能量项进行全局积分时引入局部熵信息,使得模型具有各向异性,从而对噪声和偏移场影响更具鲁棒性.实验结果表明,本文方法可以得到较准确的分割和偏移场矫正结果.  相似文献   

2.
Tsallis熵具有非广延性,其用于图像分割取得了比Shannon熵好的分割效果.但传统Tsallis熵分割主要基于点的分割,其不足处在于忽略边界区域的信息.为消除忽略边界区域信息给图像分割带来的不足,在二维Tsallis交叉熵基础上提出了二维Tsallis交叉熵直线型分割方法,并将聚类小生境粒子群算法应用于最佳二维阈值的搜索当中,最佳阈值搜索速度有了明显提高,所得阈值较为理想.实验表明此方法取得了比传统Tsallis熵分割法较好的分割效果.  相似文献   

3.
基于空间模式聚类最大熵图像分割算法研究   总被引:3,自引:0,他引:3  
陈秋红  沈云琴 《计算机仿真》2012,29(1):214-216,326
研究图像分割优化问题,在分割图像中,提取信息受到各种因素影响,分割效果不理想。针对图像分割计算复杂,造成图像分割分辨率低,清晰度不高。同时,当图像中的信息量非常大时,图像分割非常耗时。为了有效地分割图像,提出了一种基于空间模式聚类和最大熵算法原理相结合的图像分割方法。首先对图像采用最大熵算法进行图像分割,为每个熵区域定义特征量。根据不同的特征量计算相似区域之间的欧氏距离和空间距离,从而确定像素聚类中心的距离。然后对分割后的图像区域采用基于空间模式聚类方案进行合并,并对图像进行二值化处理。仿真表明与传统图像分割相比,提高了分割效率,分割出的图像边缘效果清晰,证明了算法的可行性和有效性。  相似文献   

4.
基于多代表点近邻传播聚类算法,提出一种有效的大数据图像的快速分割算法。 该算法首先运用均值漂移算法将彩色图像分割成很多小的同质区域,然后计算每个区域中所有 像素的颜色向量平均值,并用区域数目代替原图像像素点数目,选用区域间的距离作为相似度 的测度指标,最后应用多代表点近邻传播聚类算法在区域相似度矩阵上进行二次聚类,得到最 终的图像分割结果。实验结果证明,提出的算法在大数据图像的分割中取得了较为满意的分割 效果,且分割效率较高。  相似文献   

5.
传统模糊C-均值聚类算法需要输入初始聚类中心,但是输入错误的初始聚类中心会产生较差的图像分割结果。对此提出一种改进的医学图像分割算法——基于免疫模糊聚类的医学图像分割。该算法能够快速有效地找出合适的初始聚类中心值,使之最大可能地趋近于理想值,从而大大提高算法的效率,避免陷入局部解。同时,将免疫克隆选择算法融入到模糊聚类算法中。实验结果表明,该算法能快速有效地找到合适的初始聚类中心,能有效提高搜索效率和准确率,得到较理想的分割效果。  相似文献   

6.
范虹  侯存存  朱艳春  姚若侠 《软件学报》2017,28(11):3080-3093
现有的软子空间聚类算法在分割MR图像时易受随机噪声的影响,而且算法因依赖于初始聚类中心的选择而容易陷入局部最优,导致分割效果不理想.针对这一问题,提出一种基于烟花算法的软子空间MR图像聚类算法.算法首先设计一个结合界约束与噪声聚类的目标函数,弥补现有算法对噪声数据敏感的缺陷,并提出一种隶属度计算方法,快速、准确地寻找簇类所在子空间;然后,在聚类过程中引入自适应烟花算法,有效地平衡局部与全局搜索,弥补现有算法容易陷入局部最优的不足.EWKM,FWKM,FSC,LAC算法在UCI数据集、人工合成图像、Berkeley图像数据集以及临床乳腺MR图像、脑部MR图像上的聚类结果表明,所提出的算法不仅在UCI数据集上能够取得较好的结果,而且对图像聚类也具有较好的抗噪性能,尤其是对MR图像的聚类具有较高的精度和鲁棒性,能够较为有效地实现MR图像的分割.  相似文献   

7.
基于密度聚类的医学图像分割DCMIS*   总被引:1,自引:1,他引:0  
为了克服聚类算法对灰度不均匀和有噪声的医学图像分割存在鲁棒性较差等缺点,提出一种基于核密度估计的密度聚类方法分割医学图像.在分析DENCLUE密度聚类算法的思想及爬山策略存在的三个问题的基础上,改进了此密度聚类的爬山策略,并设计了适合于人体组织器官图像分割的DCMIS(Density Clustering based Medical Image Segmentation)算法.该算法先用核密度估计数学模型描述医学图像,然后用改进的爬山算法识别聚类,最后根据聚类分割医学图像.该算法有容忍大量噪声数据等特性.实验结果中的欠分割率、过分割率和错误分割率表明DCMIS比DENCLUE和FCM算法有更好的性能和较好的医学图像分割效能.  相似文献   

8.
结合非局部均值的快速FCM算法分割MR图像研究   总被引:1,自引:0,他引:1  
张翡  范虹  郝艳荣 《计算机科学》2014,41(5):304-307,314
针对FCM算法分割医学MR图像存在的运算速度慢、对初始值敏感以及难以处理MR图像中固有Rician噪声等缺陷,提出了一种结合非局部均值的快速FCM算法。该算法的核心是首先针对MR图像中存在的Rician噪声,利用非局部均值算法对图像进行去噪处理,消除噪声对分割结果的影响;然后根据所提出的新的自动获取聚类中心的规则得到初始聚类中心;最后将得到的聚类中心作为快速FCM算法的初始聚类中心用于去噪后的图像分割,解决了随机选择初始聚类中心造成的搜索速度慢和容易陷入局部极值的问题。实验表明,该算法能够快速有效地分割图像,并且具有较好的抗噪能力。  相似文献   

9.
本文提出了一种基于二维最大熵的遗传聚类分割算法。该算法以RGB图像的G分量像素的灰度值为特征向量进行编码,利用二维直方图熵法准则函数作为适应度函数,采用基于排名的选择操作,以一定的概率进行算术交叉和变异,并结合聚类分析设定种群的聚类中心对损伤苹果切片图像进行遗传聚类分割,克服了仅利用一维灰度直方图熵法的误分割,获得了较好的分割效果。  相似文献   

10.
混合聚类彩色图像分割方法研究   总被引:2,自引:0,他引:2       下载免费PDF全文
提出了一种基于K-均值算法和EM算法混合聚类的彩色图像分割方法。首先将待分割的RGB彩色图像转化成YUV空间模型,然后将该图像分割成n小块,对每个块的颜色分量用改进的K-均值聚类算法进行聚类分析,最后用EM聚类算法对每个块进行聚类,分割源图像。对K-均值算法和EM算法的初始聚类中心引进了改进算法,加快了算法的收敛速度。并与相似的分割方法进行了比较实验,给出了详细的实验结果与分析。实验表明该方法分割速度快,效果好,具有较高的实用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号