共查询到18条相似文献,搜索用时 62 毫秒
1.
针对以往流行度预测方法未利用演化模式之间的差异和忽略预测时效性的问题,提出了一种基于演化模式的推特话题流行度预测方法。首先,基于K?SC算法对大量历史话题的流行度序列进行聚类,并得到6类演化模式;然后,使用各类演化模式下的历史话题数据分别训练全连接网络(FCN)作为预测模型;最后,为选择待预测话题的预测模型,提出幅度对齐的动态时间规整(AADTW)算法来计算待预测话题的已知流行度序列与各演化模式的相似度,并选取相似度最高的演化模式的预测模型进行流行度预测。在根据已知前20 h的流行度预测后5 h的流行度的任务中,与差分整合移动平均自回归(ARIMA)方法以及使用单一的全连接网络进行预测的方法相比,所提方法的预测结果的平均绝对百分比误差(MAPE)分别降低了58.2%和31.0%。实验结果表明,基于演化模式得到的模型群相较于单一模型能更加准确地预测推特话题流行度。 相似文献
2.
微博流行度预测是根据微博早期的传播特征来预测其未来的传播范围.目前的主要方法是根据信息早期传播的流行度进行预测,忽略了传播速度变化的趋势,这导致此类方法在预测微博消息未来流行度时准确性较差.为了更准确和方便地预测微博未来流行度,提出了一个多元线性回归模型:用户活跃度及传播加速度(user activity propagation acceleration, UAPA)模型.首先,研究了未来流行度与早期传播趋势变化的联系,发现两者存在正相关关系,根据这个发现,提出了传播加速度的概念,并基于传播加速度和早期流行度建立了预测模型.然后,分析了微博用户周期性的活动现象并发现用户转发数量在一天的不同时刻差异很大,传播加速度和流行度也不同.基于这种情况,根据用户活跃性优化了预测模型.最后在2个真实数据集(分别有100万和41万条微博)上对比了UAPA模型与业内代表性流行度预测方法的预测准确度,分析了模型中参数取值对于预测效果的影响.实验表明:提出的UAPA模型在多个性能指标上都优于现有方法. 相似文献
3.
随着全媒体时代的到来和社交网络的发展,流行度预测在舆情监测和数据话语权的争夺上开始发挥重要的作用。现有的流行度预测研究多集中于外文媒体,对以微博为代表的国内主流媒体进行流行度预测是一个新兴且具有挑战的方向。本文针对微博这一国内社交媒体平台进行研究,通过对微博内容及微博用户的特征分析,设计了多种流行度预测方案,同时,提出了一种基于XGBoost的微博流行度预测算法,将流行度预测问题转换为互动值档位分类问题,在分类式框架下将提取融合后的特征用于模型训练,可以较为准确地对有用户信息的微博的流行度情况进行预测。本文的算法在微博流行度预测数据集中得到验证,并且取得了准确率高达85.69%的优越效果。 相似文献
4.
社交网络中消息的流行度预测问题在很多应用领域都有着重要意义。传统的流行度预测方法包括基于特征的方法和基于点过程的方法。基于点过程的方法无法利用历史消息的信息,而基于特征的方法则使用一个统一的模型来对所有的消息进行预测,没有考虑消息的特异性。因此,该文提出了一种基于相似消息的流行度预测方法。对于待预测微博,我们从历史消息选取出与之最相似的前K条消息来进行预测。在计算消息相似度时,我们借助了文档建模领域的LDA模型来学习消息的表示。在数据集上的实验结果表明,该方法可以有效发现在传播模式上与待预测消息相似的历史消息,并在流行度预测任务上取得了比对比模型更好的预测效果。 相似文献
5.
6.
7.
8.
动态信息网络是当前复杂网络领域一个极具挑战的新问题,其动态的演化过程具有时序、复杂、多变的特点.结构是网络最基本的特征,也是进行网络建模和分析的基础,研究网络结构的演化过程对全面认识复杂系统的行为倾向具有重要意义.使用“角色”来量化动态网络的结构,得到动态网络的角色模型,应用并改进多类标分类问题的“问题转换”思想,将动态网络的角色预测问题视为多目标回归问题,以历史网络数据作为训练数据构建模型,预测未来时刻网络可能的角色分布情况,提出基于多目标回归思想的动态网络角色预测方法MTR-RP.该方法不仅克服了基于转移矩阵方法忽略时间因素的不足,并且考虑了多个预测目标之间可能存在的依赖关系,实验结果表明,本文提出的MTR-RP方法具有更准确且更稳定的预测效果. 相似文献
9.
10.
移动app流行度预测从运营策略优化到短期广告投资都具有重要意义.利用应用市场提供的丰富数据,挖掘不同特征指标与流行度之间的动态关联,从而预测未来一段时间内app的流行度变化过程及其原因,对于开发者、投资商和应用市场三方都具有应用价值.然而,app流行度高度动态变化,其影响因素十分复杂,包括app自身迭代演化、用户反馈、同类产品的市场竞争等.目前,针对app流行度建模与预测的研究工作相对较少,大多通过构造人工特征并构建与流行度的关联来进行预测,在模型的计算性能、预测精度和结果可解释性等方面存在可提升的空间.因此针对app流行度建模与预测提出一种基于注意力机制的深度神经网络模型DeePOP,并针对复杂影响因素进行分级建模.通过时间级自序列模块捕获对历史流行度的长期依赖,利用局部、全局特征层级模块构建影响特征与流行度的非线性关系.同时,注意力机制为不同模块提供自适应能力,以捕获与流行度变化最相关的历史状态并针对预测结果提供一定的解释.实验结果表明:与现有流行度预测方法相比,DeePOP能够快速高效地进行app流行度建模与预测,预测均方根误差为0.089. 相似文献
11.
在线媒体快速发展,为用户带来丰富多彩信息的同时,用户的参与也给在线媒体本身带来巨大的经济利益。因此,如何通过精确预测用户的偏好以增加在线媒体点击,成为一个学术界和工业界均关注的问题。现有的预测方法主要是借助用户个人信息和历史行为来预测用户行为,然而此类方法没有考虑媒体本身缺乏用户信息造成无法预测的问题。随着社交网络的发展,在线媒体与服务运营商间的兼并或合作的增多,支持用户通过单一账户使用多个媒体网络服务的情况越来越常见,这就为基于用户在社交网络中的资料预测用户在其他媒体中的喜好提供海量可信的基础数据。该文基于社交网络Google+和视频媒体YouTube的数据,首先证明用户在YouTube偏好具有高度的集聚性,并提出用户在社交网络中偏好与其在线媒体点击行为具有关联性,基于这种关联性,该文使用社交网络用户信息预测用户在在线媒体中的点播行为。实验结果显示,使用社交网络用户信息可以有效预测用户偏好,预测准确率比仅使用媒体本身信息提高了17%,而且能满足用户个性化需求。 相似文献
12.
随着在线社交媒体的快速发展和可定位设备的大量普及,地理位置作为社交媒体大数据中一种质量极高的信息资源,开始在疾病控制、人口流动性分析和广告精准投放等方面得到广泛应用.但是,由于大量用户没有指定或者不能准确指定位置,社交媒体上的地理位置数据十分稀疏.针对此数据稀疏性问题,提出一种基于用户生成内容的位置推断方法UGC-LI(user generate content driven location inference method),实现对社交媒体用户和生成文本位置的推断,为基于位置的个性化信息服务提供数据支撑.通过抽取用户生成文本中的本地词语,构建一个基于词汇地理分布差异和用户社交图谱的概率模型,在多层次的地理范围内推断用户位置.同时,提出一个基于位置的参数化语言模型,计算用户生成文本发出的城市.在真实数据集上进行的评估实验表明:UGC-LI方法能够在15km偏移距离准确定位64.2%的用户,对用户所在城市的推断准确率达到81.3%;同时,可正确定位32.7%的用户生成文本发出的城市,与现有方法相比有明显的提高. 相似文献
13.
14.
YouTube (owned by Google Inc.) is arguably among most popular social media platforms used by millions across the globe. It provides an ever-growing, unique and rich source of content which presents new opportunities and challenges for information discovery and analysis. It is pertinent to explore and understand a topic via YouTube content to discover interesting information about public opinions and sentiments. This paper presents an integrated framework to facilitate the acquisition, storage, management, processing, and visualization of relevant content with the objective to assist in such analysis. It not only collects a significant portion of content, relevant to a given topic, in short time but also offers tools for visual exploratory analysis such as; (i) temporal evolution, (ii) vocabulary network, (iii) authors relative popularity and influence (iv) categories and (v) user communities and influencers. The utility and effectiveness is demonstrated through content analysis of a famous YouTube entertainment topic, the “Gangnam Style”. 相似文献
15.
针对现有算法对用户兴趣在跨网络用户身份识别中作用的忽视以及时间复杂度高的问题,提出了基于用户兴趣的跨社交网络用户身份识别算法(UI-UI)。首先利用分块思想对用户节点进行初筛选,以提升算法效率、降低时间复杂度;其次,根据用户产生内容(UGC)和用户社交关系对用户兴趣进行建模,并计算兴趣相似度作为身份识别的依据;最后利用半监督学习的方法进行跨网络用户身份识别。通过在真实社交网络中进行实验,结果表明UI-UI算法能有效识别跨网络用户,且准确率和召回率稳定,运行时间显著减少。 相似文献
16.
E. FitzGerald 《Journal of Computer Assisted Learning》2012,28(3):195-207
Two recent emerging trends are that of Web 2.0, where users actively create content and publish it on the Web, and also location awareness, where a digital device utilizes a person's physical location as the context to provide specific services and/or information. This paper examines how these two phenomena can be brought together so that user‐generated content on mobile devices is used to provide informal learning opportunities relevant to a person's location. However, the generative process of such media does not always have much guidance on how or what to create, so the quality of such information can be highly variable. To overcome this, a framework has been designed to guide the authoring of user‐generated content so that it can be used for informal learning about one's immediate surroundings (particularly in an outdoor setting), combining pedagogical aspects with those from human–computer interaction and environmental aesthetics. The framework consists of six dimensions that include aspects such as curriculum area (e.g. science, art), type of communication, use of language/media related to the landscape, knowledge level of content, contextual aspects, and types of interaction. In order to test the framework before it could be used to scaffold new content, it was first used to analyse and evaluate over 200 items of existing user‐generated content, to investigate the appropriateness of the proposed dimensions and the items contained therein or if any were missing. This paper presents the findings of this initial testing phase, together with a discussion of how the framework can be improved, in order to help scaffold the creation of new user‐generated content in the future. 相似文献
17.
As various social network services have developed, users are creating and sharing a large amount of content. Concurrently, there have been many studies on recommendation schemes for providing users with content that matches their preferences. In this paper, we propose a trust‐based personalized content recommendation scheme using collaborative filtering in online social network services. The user trust is calculated by analyzing social activities, content usages, and social relationships. In addition, the content trust is calculated by analyzing user expertise and reputations. Collaborative filtering is performed on users who are filtered through the user trust, and recommendation priorities are determined according to the content trust. The proposed scheme can improve the performance of collaborative filtering by eliminating untrustworthy users using user trust. It also improves the accuracy of recommendations since it provides recommendations based on content trust. Therefore, the proposed scheme can improve the performance of recommendation services using collaborative filtering in online social network services that share multimedia content. Performance evaluation is performed in terms of MAE and RMSE, which assesses errors in recommended results to demonstrate the superiority of the proposed scheme. Performance evaluations have shown that errors in the proposed scheme are reduced compared to the existing schemes, improving the accuracy of recommendations. 相似文献
18.
Little is known about internet and social media use among homeless youth. Consistent with typologies prevalent among housed youth, we found that homeless youth were using internet and social media for entertainment, sociability, and instrumental purposes. Using Haythornwaite's (2001) premise that it is important to look at the types of ties accessed in understanding the impact of new media, we found that homeless youth were predominantly using e‐mail to reach out to their parents, caseworkers, and potential employers, while, using social media to communicate with their peers. Using the “Social Capital” perspective, we found that youth who were connecting to maintained or bridging social ties were more likely to look for jobs and housing online than youth who did not. 相似文献